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General perturbation expansions, which allow corrections to any order to be written in
quadrature, are presented for Riccati and other nonlinear first-order equations. These results are
valid for eigenfunctions which are free of poles and zeros. A Riccati equation suitable for a
Schrédinger or Klein—Gordon particle in a central field is expanded for a general state, with
corrections to all orders expressed in quadrature. A general Riccati equation for a meromorphic
eigenfunction leads to a similar expansion with corrections to all orders, including corrections to
the zeros and simple poles, expressed in quadrature. This form is suitable for a Dirac particle in a
central field but is more general. The general results are applied to specific examples from the

literature.

I. INTRODUCTION

The Riccati equation formulation of central field prob-
lems in quantum mechanics has attracted increasing atten-
tion over the last two decades. Price' observed some thirty
years ago that when the one-dimensional Schrédinger equa-
tion is reduced to Riccati form, the perturbative solution
may be obtained in quadrature to any order in terms of the
unperturbed solution and the perturbative potential. This
was rediscovered later by Polikanov,” and later, indepen-
dently by Aharonov and Au.? Polikanov* in another paper
pointed out that in excited states, where the wave function
has nodes, modifications become necessary. In this case, the
expansion is straightforward but somewhat tedious,>* so
that orders higher than first have not been done for a general
excited state. That is one of the topics of this paper. One way
to circumvent this difficulty is to apply the first-order per-
turbation iteration method introduced by Hirschfelder’ in
connection with Rayleigh-Schrodinger perturbation the-
ory, first applied to a Riccati equation in quantum mechan-
ics by Au.® Auand Aharonov’ have shown that, by consider-
ing the logarithmic derivative of the wave function of the
Klein—-Gordon equation in one-space and one-time, one can
obtain an expansion of the same nature as the nonrelativistic
(Schrodinger) case for perturbations of either scalar or
fourth-component vector type. The Dirac equation may be
reduced to Riccati form for central fields by considering the
ratio of the radial wave function components. This was first
done by Mikhailov and Polikanov,® who then obtained a
perturbation expansion of the resulting Riccati equation.
This was generalized to excited states by Au and Rogers,’ to
include scalar potentials by Au,'® and to include anomalous
magnetic moment interactions as well as simultaneous per-
turbations of more than one type by Rogers.'' The Breit
equation for two Dirac particles, in the absence of external
fields, has been reduced to an independent Riccati equation
for the J = O states recently by Rogers,'* which leads to a
perturbation expansion similar to that obtained for the Dirac
equation.

The perturbation expansion of a nonlinear first-order
eigenvalue equation is considered in the first part of Sec. II
for the set of solutions which are free of both zeros and sim-
ple poles. This is followed by a more specific treatment of the
Riccati equation for the same set of restricted solutions. In
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Sec. III, a Riccati equation suitable for either a Schrédinger
or a Klein—Gordon particle, but with a slightly more general
form, is expanded for a set of solutions, including those for a
general excited state; and the corrections to any order for a
general state are expressed in quadrature. In Sec. IV, the
general Riccati equation for a meromorphic function is ex-
panded, with the corrections to any order expressed in qua-
drature. The problem of zeros in the coefficients is included
in the treatment, which is applicable to both the Dirac equa-
tion and the Breit equation mentioned above. The results
allow portions of the results of a number of papers®>! to be
written out with minimal effort. More importantly, the final
equations developed here allow one to write out the explicit
higher-order corrections for excited states previously omit-
ted in favor of the first-order perturbation iteration method.
In Sec. V, several examples are presented and in Sec. VI, I
make some concluding remarks.

Il. PERTURBATION EXPANSION FOR NONLINEAR
FIRST-ORDER EQUATIONS

A. The general problem

The problem considered here is that of a nonlinear ordi-
nary first-order eigenvalue equation which can be written in
the form

a(rp,E)R () + i b,(rv,E)R (1" =0, (2.1)

where v is a function of 7, R (#) is the eigenfunction, E is the
eigenvalue, and N is the order of nonlinearity. The subse-
quent treatment assumes that an initial solution to this equa-
tion is known. That is, for a,, b,,9, and v, there exists R, and
E, such that

aroERA + 3 buolruERi =0 (22

The corrections to R and E, are sought for a small change in
the function v{r) from v, to

v(r) = vy(r) + Avy(r), (2.3)

where v, will be referred to as the perturbation and A is a
number, to be referred to as the coupling constant, and plays
an important role in the expansions to be developed.

The conventional method of obtaining a perturbation
expansion for an eigenvalue problem is to expand both the
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eigenfunction and the eigenvalue in power series of the cou-
pling constant. Accordingly, I assume that for some range of
A about A = 0, both R and E may be represented by the series
expansions

R= 3 iR, (2.4)
n=0
and
E= ¥ A"E, (2.5)
n=0

If a(r,v,E) and b, (r,v,E ) can be represented by a polynomial
expansion in v and E, this then leads to the expansions

a= S i, (2.6)
n=0
and
= 3 4%, 2.7)
i=0

If Egs. (2.3)2.7) are substituted into Eq. (2.1) the fol-
lowing expansion results:

2 /1"+"'aR,',,+ zi"bOn

n=0m=0

+ z S i, H( $ A"‘R,,i)=

k=1n=0 i=1\n=0

o«

(2.8)

By collecting terms of a given power of A, one obtains a
hierarchy of equations to any order in A. In particular, each
of these equations is linear and of the form

N
aRi+| 3 kbuoRE R, 45+ =0. 29
k=0

The term p,, may be chosen so that it contains the functions
a, and b,, and hence E,, whereas g, would consist of only
the lower-order functions, in both cases of overall order 7.
The exact form of p, and ¢, will be worked out only for the
case N = 2, which is done below. These equations are in gen-
eral inhomogeneous linear first-order differential equations,
which allow the solutions to be written in quadrature. By
starting with the first order or n = 1 corrections and per-
forming the integrals at each succeeding order, one may
work up the hierarchy to any desired order.

B. Expansion of the Riccati equation
The general Riccati equation is given by

a(rv,E)R' + b(rp,E)R?*+ c(r,v,E)R +d (rv,E) =0.
(2.10)

I assume that a,b,c and d can all be expanded in A as was a in
Eq. (2.6}, and R can be expanded as in Eq. (2.4). The Riccati
equation analog of Eq. (2.8) is

2 Ar*™a,R’ +c,R,)+ Eﬂ,"d
n=0m=0
+ i i 2'1n+m+kbanRk=0'

n=0m=0k=0

(2.11)

By collecting all terms of a given order of A, I obtain a hierar-
chy of equations with the nth-order equation given by

S (@R

m=0
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+d 4+ 3 bm(nimRkR,,_k_,,,)=O. (2.12)
m=0 k=0
By arranging terms this can be written as
aoR ; +(co + 2b6Ro)R,, + P, + 4, =0, (2.13)
where
pn=d,+a,R;+c,Ry+b,R? (2.14)
and

n—1

9, = 2 (amR,~m +cmRn—m +bORmRn—m)

n—1

+2b szn—km

m=1

(2.15)

Thus, as can be seen from Egs. (2.14) and (2.15), p,, contains
E, and g, contains only quantities of order less than 2.

C. Solution of the linear equations

I present in this section the solution to Eq. {2.13) which
was derived from the Riccati equation (2.10). The generaliza-
tion to Eq. (2.9) is easily made and will be indicated at the end
of this section. The validity of the equations that follow is
restricted to initial solutions with neither zeros nor poles,
and ay(r) is assumed to be free of zeros also. In Secs. III and
IV the results will be generalized to include these complica-
tions for Riccati equations which are encountered when
dealing with excited states in quantum mechanics.

The solution to Eq. (2.13) involves the integrating factor

defined by
polr) = exp[ J (C—O%"—M dr’]. (2.16)
It is convenient to define ar(; intermediate function G, by
Golr) = exp[ J- % R, dr’]. (2.17)
In terms of G, the int(:agrating factor is given by
polr) = exp[ J % dr']Go(r)z. (2.18)
0

The nth-order correction to the energy can then be ob-
tained from the definite integral

0( )[ p,.(r)+q,.( )]

dr=0. (2.19)

The nth-order correctlon to R,(r) is easily verified to be given

by
O(J odlr )[pn(r);r?,.( )]d.

This gives the nth-order correction to any Riccati equation
of the form of Eq. (2.10) for the restricted set of solutions
under consideration.

For the more general equation {2.1), the corrections
Egs. (2.19) and (2.20) are correct if the following integrating
factor is used instead of Eq. (2.16):

" N kb RV
po(r)=exp[J. 2 -——io——o—dr'].

0 k=1 a,

R,(r)= (2.20)

(2.21)
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1il. EXPANSION FOR SCHRODINGER AND KLEIN—
GORDON PARTICLES

The Riccati equations derived from both the one-di-
mensional Schrédinger equation' and the one-space and
one-time Klein-Gordon’ equation are of the form

R(ry —R{r} +d(rp.E)= (3.1)
where d is some function of 7, v(r), and the eigenvalue E. The
functional form of d is left unspecified until the examples
presented in Sec. V. The function R is the logarithmic deriva-
tive of the wave function for both types of particles. Thus, if
the wave function has zeros, R has simple poles and is of the
form

(3.2)

= l )
where Qis a funcnon free of both zeros and poles, ' is the
position of the ith pole of R or zero of the wave function, and
N is the number of poles of R. In what follows, I will make
use of

=11 r—a), 33
so that

o< 1 3.4

f ,.; (r—a) oA

With Eqs. (3.2)+3.4), Eq. (3.1) can be written in terms of Q as

Q' —Q*+2f/)Q—Sf"/f+d=0. (3.5)
1 assume that Q can be expanded in power series in 4 as was
R in Sec. I1. Each &' is expanded in the same fashion and this

allows the expansion of f to be carried out. I choose to ex-
press this expansion in terms of £, and f,,, where

N
fo= [ r—ao) (3.6a)
i=1
N
Sn= fo, n>1, (3.6b)
i=1 {r -_— ao)
and f,, is uniquely defined through
S=fo+ i+ X A0 T, (3.7)

with £, and f; both zero. Thusf, contains only terms individ-
ually of order less than n. For example, £, is given by

- ai

= e s 3.8
= 2 -

and higher orders are straightforward to write down.

To eliminate any poles from the Riccati equation (3.5} it
is sufficient to multiply that equation by /. Once this has been
done, @, f, and d may all be expanded as indicated above and
various powers of A can be collected to obtain the linear
equations. The zero-order (nonlinear) equation is just

£Q6—fQ5 +20Qo—f3 +dofo=0. (3.9)
By defining

24(Q,) =fo@ 7 — 2/6Q20Q,, + 2f 60, (3.10)
and
ZAf ) =@ —faQ8 +2Qof 7 —f +fado,  (3.11)
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it is possible to write the nth-order equation as
24(Q,) + Zolf u) + dufy + Zolf 1)

n—1

+ S0 +duy]

+ T Wi+ T

n-—1

— ”;_o(fi +7i)Qij¢S(i+j+k_n)=0.

Here I have used a  function, which has the value § (0) =1
and is zero otherwise. The integrating factor for this equa-
tion is

polr) =£3tenp| ~ [ 20,7

With the zero-order equation (3.9) and Eq. (3.13), one finds
that

(3.12)

(3.13)

JoZiQ) = [Qn 0]’ (3.14)
fo —a, !
JoZalf ) = o [‘_; mﬂo(’)] , (3.15)
and
foiF ) = f"—[wo T2l 3.16)
P fa

These relations allow the nth-order equation to be rewritten
as

(Gl — 3 ai[-(;—_p-"—,.-);]'

i= ao
+ [(7,.1'.; _Fife J—‘,’-—] +dypo

n—1

- & [ S S +F Qs )

=S AT

n—1

+ S A +7.~)Q,Qk6(i+j+k_n)]. (3.17)

ijk=0
This equation can be integrated from r=0 to r= oo,
whence, on making use of the physical requirement that p, is
zero at both limits, one has

fd,,podr-:f [rhs]dr,
0 0

where [rhs] represents the right-hand side of Eq. (3.17). Once
this integral has been performed, the value of E, is deter-
mined.
The nth correction to the ith node of the wave function
is given by
P 1) exp[ 5520, dr]
Hj;ei(af) —ab) Hj:;éi(a{) - a({)z

X { fd,,po dr — J:é[rhs]dr}.

The nth-order correction to Q (7) is found by integrating
Eq. (3.17) from zero to r. This results in the expression

(3.18)

(3.19)
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i a,polr)

S (r—ap)

— [ lrifoley

polr)@,(r) =

£ol?)
fnfo]ﬁ)}

- f d,podr + f [rhs]dr.
o] 0

When r=aj, fyay) =0, and hence pyla)) =0, which
means that Q, (af) cannot be determined directly from Eq.
{3.20). This problem can be circumvented by referring back
to Eq. (3.10) and noting that at r = a,

N
5[ Qulab)] = ] (@b — ad)Q, (h).

j]: ‘l
This is then the only term in the nth-order Eq. (3.12) which
involves Q, (@} ). That equation, along with Eq. (3.21) above,
permits the evaluation of Q, () once the other nth-order
corrections have been determined from Egs. (3.18) and
(3.19). This observation has not previously appeared in the
literature on the Schrodinger and Klein—-Gordon Riccati
equations. This seems to be a much simpler alternative to the

method suggested by Privman.”?

(3.20)

(3.21)

IV. THE RICCATI EQUATION AND EXPANSION FOR A
MEROMORPHIC FUNCTION

The eigenfunction of the Riccati equation for a Dirac
particle in a central field is the ratio of the two radial wave
function components.®® Thus, for a Dirac particle, the func-
tion R is a ratio of two functions, each of which has a finite
number of zeros. This means that R is a meromorphic func-
tion with a finite number of zeros and also a finite number of
simple poles. If there are N, simple polesand N, zerosin R, it
can be written

%, (r—B)

.__N_‘_____i o),

III =1 (" —-a )
where Q (7} is free of both zeros and poles, B is the position of
the ith zero, and &' is the position of the ith simple pole on the

real line. To simplify the expressions that follow, I define f
and g by

(4.1)

N,
f= -1:[1 (r—a, (4.2a)
and
N, .
g= | r—8" (4.2b)

FE |
The generalization of the Riccati equation for a Dirac
particle that I shall use is

a(rv,E)R (1) + b (ru.E)R ()

+clrw,ER(r)+d (r,0,E)=0. (4.3)

This form is appropriate for not only a particle satisfy-
ing the central field Dirac equation, but also for two Dirac
particles in a J = O state of the Breit equation in the absence
of external fields.”?> With this latter application in mind, 1
wish to include the possibility that a(r,v,E ) may be zero for
some value of 7.
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I assume that the variable coefficients a, b, ¢, and 4 in
Eq. (4.3) are rational functions of v(r) and energy E. For a
known solution R, satisfying

ao(r,uo, EQ)R § + bo(r,ug, EQ)R 3

+ Colr v, Eq)Ro + dolrvg,Eq) = 0, (4.4)
and a perturbation represented by Av, so that the new poten-
tial function v(r) is given by

v(r) = vofr) + Avy(r). (4.5)

Iassume that Q, a, B, E, a, b, ¢, and d can all be represent-
ed by power series in A. Specifically,

Q= ni:)ofl"Qn, (4.6a)
a'= Y A, (4.6b)
B'= ioi" " (4.6¢)
E= EOA"E,,, (4.6d)
alr,E) = iozl“an(r, U E,; m<naj, {(4.7a}
b(rvE) = 20 "ty U, En; m<n), (4.7)
ArE) = 3 A%, (r, 0 B <l (4.7¢)

S (4.7d)

dirp,E)= 3 A"d,(rv,, E,; m<n).
n=0

Here, the functions a,, b,, ¢,, and d, may, in general, be
functionsofnotonlyv, and E, butalsov,, andE,,, for m<n.
1 note that in normal expansions only v, and v, appear, but
generalization to v, is easily accomplished and will be as-
sumed here. From the definitions of f and g and the expan-
sion of &' and B, the expansions of fand g are easily carried
out and may be written in the form

f= 3 A, +7.) (4.8a)
n=0
and
g= 3 Alg, +2.) (4.8b)
n=90

where f, and f, are defined as in Sec. Il and g, and g, are
defined analogously.

If Eq. (4.3) is expanded directly as written, there is a
problem in the neighborhood of each unperturbed pole of R.
This is easily circumvented by multiplying the equation by
f? before expanding. The result of this multiplication is

afgQ’ + bg’Q? + lalfe’ — f'g) + cfRIQ +df* = 0-(4 5

With the expansion (4.5)—{4.8) one easily obtains the dlffer-
ent-order equations. The zero-order equation is

a,fo80Q 6 + b5 Q5 + [aol fogo — fo80) + cOngO]QO
+dy f2=0. (4.10)
Before writing the nth-order terms, it is convenient to define
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a delta function such that § (0) = 1 and & (m) = 0 for m 0.
Then the nth-order terms arising from afgQ ' are
af2Q’ | ne-order
=a,f,80Q 6 + 8ol f 180 + /084126
+ 80 f80Q s + Go{ f 180 + [:8.)Q

+ ai(fj +fj)( 8k +8i)

il =
XQ 8l +j+k +1—n).
The nth-order terms arising from bg”Q 2 are
bgz Qzlnth-order
=b,805 + 2b0808, 25
+ 25085000, + 26082, 25

n—1

+ . bi(g; +&;)8x + 820
ij,kim=0

X6(i+j+k+1+m—n)
The term linear in Q in Eq. (4.9) gives the terms

[a(fg, _f’g) + c.fg]Q lnth-order
= Q, [a0(80 fo — 86/6) + coSof0] + Qo[ aa( fogs

—f080) + €, fo80] + Qo[ a0l fo8r — f08x) + €0 So8n ]
+ Qo[ao(fn86 —f18) + Cofngo] + Qo[ao(fogn
—f(’)gn) + Cofogn ] + QO[aO(.?ng(’) _7:ug0) + c07ng0]

+ 'S 0da,[1fr + Tl +B) = (F5 +T2)

i k0=

(4.11)

(4.12)

X(g +8)] +c;if« +f e +2)}

X6 +j+k+1—n) (4.13)
The last term in Eq. (4.9) gives
dlenth-order
=d, f5 + 2o fof o + 240 fof
+ 'S i+ TN+ T8+ + k=)
e (4.14)

I define the function X, through its logarithmic derivative
ﬁ _ % 25,8000 s
Xo a aofo Jo

By using the zero-order Eq. (4.10), this can also be expressed
as

(4.15)

X bgy, Qo ( fo)
2 _Teso  EO . (22, 20
Xo aofo (O

fo
-(2()(Z)
as/ \ 8/ \ Qo
With the use of Eq. (4.15) the terms of Egs. (4.11)—4.14)
involving Q, are found to be equal to

a0 fo80Q . + 26025000, + Q, [aolfo86 — /5 &) + cofo80]

= (@o/Xo) [ Xo fo80Dn ]"- (4.17)
By making use of Eq. (4.16), the terms of the nth-order equa-
tion involving £, are found to be equal to

(4.16)
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aof n80Q 6 + 2dofof n + Qolaol f 1 8 — S 280) + Cof n80]
= (ao/Xo)[ — Xof n8L0]"- (4.18)
Similarly, the terms with g, are found to be equal to
80f082 Q6 + 2bo 808 Q25 + €008, Qo
+ aol fo8r —Sf08:)Q0 = (aO/XO)[XOngn ]’
I next define

3, =0,f80Q¢6 + b.8505 + d.f}
+ Qo[ a.( /86 —S0680) + Cafo80]> (4.20)
2s= aO(?ngO + /08,006 + 2b, 82, Q3 + 2dof2).7n

(4.19)

+ Qo[ a0l fo8r — f084) + CofoBn ]
+ Qo[ aolf 180 — 180 + ¢of 80] (4.21)
and
Ze= ) _n’gl_oai(fj +Fi)g +8:)Qi8li+j+k+1—n)
+ ,:El_:l_obi(gj +&;)(8x + 8x)C2:Onm
X8(i+j+k+1+m—n)
+ ) Tlg_odi(fj +7j)(fk +7k)6(i +j+k—n)
+ 'S ode [ +F ek + )

— (1 + D@ +8)] +c,(f1 +F1)ge +8)}

XO(i+j+k+1—n) (4.22)
With the use of Egs. (4.17)—4.22), the nth-order equation can
be written as

(30/Xo) [ X0 /o80@n 1" + (80/Xo) [ Xo /8, Do)’

- ;— [Xof280Q0]’ + 24+ 35+ 3¢=0.  (4.23)
0

On multiplying this equation by (X,/a,) and integrating from
Otor,Ihave

Xo/080Qn + (fo8n —f 180} XoQo

+ f —f-"- (B4 + 5 + Zodr' =0. (4.24)
0 dyo

If the integral in this equation is taken to r = o, then by
making use of the fact that for physical solutions X, = 0 at
r = oo, I have

f Xo (5,43, +Z)dr = (4.25)

If all the corrections for m < n have been previously deter-
mined, then the only unknown appearing in this equation is
E,. Hence the nth-order correction to the energy is com-
pletely determined by this integral. Examples of the form of
the integrand will be discussed in Sec. V. At
r = ab, folal) = 0and the nth-order correction to a}, is given
by

Saled )80t )Qolat)
) F Xo (5, + 3, + Zodr.

4.26
( Xolag) ( )
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Atr =B}, gB}) = 0and the nth-order correction to B} is
determined by the expression

&n (ﬁo)fo(BO)QoLBo)

r Xo (D4 + 325+ Zg)dr.

(4.27)

XO(ﬂO
Once E,, a’,, and B, have been determined, Q, is deter-
mined by

Q. (rfolrgolr) + [folrign(r) — f n(r)golr)] Qolr)

XJr) =

X f ") (Z,+Zs+Zg)dr =0,
except at the zeros of f; and g,. At these points, specifically
the @} and the 8, the value of Q, (a}) or Q,(B}) is deter-
mined by the original nth-order equation. At any of these
points, the terms involving Q , are multiplied by £, and g,
one of which will be zero. Thus one is left with an algebraic
equation for @, (a) ) or Q, (8 5 ) with all other variables of nth-
or lower-order already determined. Hence this allows the
evaluation of Q, at these points. This method has been suc-
cessfully employed in numerical work with the Dirac equa-
tion'! and provides a simple alternative to the method sug-
gested by Privman® for problems where the solution is of the
form of Eq. (4.1)

If the coefficient a,, has zeros for certain values of 7,
there are some restrictions on the solution for these methods
to be assured to work. I begin by assuming that near one of
the zeros of a,, it can be factored as ay(r) = Ay(r)[r — 7o,
where the zero is at r = ¥, and Ay(r) is free of zeros in a
neighborhood of ¥,. Then from the zero-order Eq. (4.4) I
have the relation

bo(70)8ol(Yol/ fol¥ollQalYo) + col¥o)Qol¥o)

(4.28)

+ do(¥ollfol¥o)/8ol¥o)] = O. (4.29)
This leads to a restriction of Qy(y,)
Qol¥0) [0l Yol fol o)

172
I ColYo) 1+ (1 _ 4bo(7’o)d<;(7’o) ) ], (4.30)
2by(7,) Col¥o)

and a restriction on the coefficient functions

col¥o)> — 4bo(¥oldo(o)>0. (4.31)

In addition, the integrand in Eqs. (4.26)—(4.28) must be free
of poles. This is avoided if Xy(yy)/aq(y,) is finite. With g,
written in terms of A, as given above, I require
lim, [Xo(r)/(r — 7,)] to be finite. The function X,(r) can

r— %o

be written as
Xolr) = (r — 7o)

Xexp[ J ( Cot2bRy _ 1) 1 dr]. (4.32)

° 4, {r— 7o

In a neighborhood of 7, I can make the expansion

Lot 2b0Re 4 _ i E(r— o) (4.33)

Ao n=0

where the first coefficient of the expansion is given by

&o = [eol70) + 2b0(Yo)Ro(70)l/ Ao(¥o) — 11 (4.34)
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With this expansion, near r = y,, X,(r)/(r — 7,) is given by

Kl prtenp] [ 5 euir-

n—ld ]’
=70 P L

(4.35)
which leads to the requirement

&o = [lcolyo) + 2bo(70)Ro(¥0)1/. Ao_('}’)o —1]30. (4.36)

Therefore, if Eqgs. (4.30), (4.31), and (4.36) are satisfied, the
expressions for the nth-order corrections in this section are
valid, even where g, has zeros.

V. EXAMPLES
A. The Klein-Gordon and Schriédinger equations

The single-particle central-field Klein-Gordon equa-
tion in the presence of both a fourth-component vector po-
tential ¥ (r) and a scalar potential S (7} can be written in natu-
ral units, #i=c = 1, as™

[_idz 1+
r dr =

— (E— V|t =

The central-field Schrédinger equation can be written, again
in natural units

2
[_id o L+

r dr P
In both cases, the radial part of the wave function can be
written

Y(r) =exp[ — G(r) — 1/7], (5.3)
whence, with Q = G, either equation can be written in the
Riccati form

+m? +2mS(r)

(5.1)

+2m(V — E)]t/z(r) = (5.2)

Q'—Q%*+d=0, (5.4)
where d is
d¥¢ =1+ 1)/P+m*+2mS(r)— [E-V(N]%
(5.5a)
for the Klein—Gordon particle, and
d*=1(l+1)/r+2mV—E), (5.5b)

for the Schrodinger particle. Letting the perturbation be giv-
enby AS, and AV}, I have

S =S, +AS,, (5.6)

V="V,+AV, (5.7)
with E and Q expanded as

E= ¥ i"E, (5.8)
and "

o= 3 4. (59)

The expansion of d for the two cases follows easily from Eqs.
(5.5)5.8). For the Klein-Gordon particle, I have

d¥% =2mS, — (E, — V)Eo — Vo) (5.10a)
d3C= —(E,— V|’ —2E,E,— Vo), (5.10b)
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and
dX® =2E,(V,— E))+2E,_(Vi—E,), n>3.
(5.10c)
For the Schrédinger case, d f is given by
d$ =2m(V, — E,), (5.11a)
dS = —2mE,, n>2. (5.11b)
For both equations, the integrating factor is
Po= exp[ — f 20, dr], (5.12)
0
with
p,=d,, (5.13)
and
n—1
9. = — z RmRn—-m’ (5'14)
m=1
with the nth-order corrections given by Egs. (2.19) and
(2.20).

This gives the ground state corrections for both types of
particles. The expressions obtained this way differ from
those of Auand Aharonov’ for the Klein—-Gordon particle in
a ground state only in the limits of integration and the addi-
tion here of the central field angular momentum term. The
lower limit of integration of p, is chosen by them such as to
normalize p,,. The first excited state corrections for a Klein—
Gordon particle have been given in Ref. 7 and are equivalent
to those obtained by this procedure, except for the difference
mentioned above for the nodeless states, and so will not be
presented here. Instead, to demonstrate the form of the re-
sults with this notation for higher excited states, I will pre-
sent the corrections for an excited state with two nodes, one
ata} and the other at a2 . The Riccati equation for the case is

Q' —Q*+2f/N1Q—f"/f+d=0, (5.15)
with the d ¥© and d $ given as before and
fo=r—ag)ir—aj), (5.16)
fo=—dilr—ay)—a,r—ag), n>l, (5.17)
=S i, n32, (5.18)
i=1
withf, =0, and
- fo=(r—as) +(r—ag), (5.19)
fi=—lal +a2), n31, (5.20)
0 =2, (5.21)
and
fr=F.=fr=0. (5.22)
The integrating factor is given by
polr) = (r — ag)ir — ajfe™ P&, (5.23)

The nth-order corrections are found from the equations

al 2
Polr@.(r) = [ ]Po( r)
-

+
) (r—a3)?
"o Po_
- ald’_(r—al +r—al)Lt-
121 ° © fO

—fdnpodr'+ f [thsly, (524
(4] 0
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where the [rhs] of Eq. (3.12) can be written for this case as

[rhs] = ”°[ S |a2ir—ad)

i=1

n—1
+a.’,(r—a§) - 2 a}a?_,-]

X(@n_i+d,_i)+ 2 2[ay +a3]C._,

i=1

n—1

+ X

k=0

— ajlr — ag) — aifr — ag)

i—1

+ Y anai_,

m=1

|o,@usi +1-+ &~ ).
(5.25)

From Egs. (5.24) and (5.25) all corrections may be deter-
mined as discussed earlier.

B. The Dirac equation for nodeless states

The Dirac equation for a combination of scalar poten-
tial S, fourth-component vector potential ¥, and anomolous
magnetic moment term €, when all three terms have spheri-
cal symmetry, leads to the Riccati equation for nodeless
states'!

R’ —2kR/r—2eR+R¥E~V+m+5)

+E—-V—-m—8)=0. (5.26)
From this equation, the coefficients are identified as

a=1, {5.27a)

b=E—-V+m+S, (5.27b)

c= —2k/r—2e (5.27¢)

d=E—-V—-—m-—S. (5.27d)
Then, with

V=V,+ AV, (5.28a)

€=¢€, + A€y, (5.28b)
and

S=8,+4S,, {5.28¢)

the nth-order correction to the energy is, from Eq. (2.19),
found to be given by

E, ["(1+R3podr
= f 261R"__1p0dr

n—-1
f [(Eo—Vo+m+so) S R, R,_,

m=1

n—1

+(E1 - Vl +Sl) Z RkRn—k—m

(5.29)

n—1
+ z E, Z R.R, ,_ ,,,]podr.

This duplicates the combined resuits of Refs. 9-11 for node-
less states.

For the same problem, the first-order corrections to ex-
cited states with nodes and poles are easily written down
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from Sec. IV, The sigmas are easily found to be given by
Zi=E-V +Sl)g(2)Qg +(E =V, —Sl)f%

— 2¢€, f080Q0s (5.30)

and
3,=3,=0, {5.31)
so that the first-order corrections are determined from

Qu(rifolrigolrIXolr) + Uolriga(r) — £i(rgolr)]
X QolriXolr) + fo Xo(r)[(E, — V))f5 +£5Q3)

+ Sl(g%Qg —f(l;) - 2€1fogoQo]drl =0.
From Eq. (4.16) X, is given by

Xn=r" 2"exp[ - f 2¢, dr]

(5.32)

xexp(2 [ [(Bo = Vo +-m + Sgos 1] 710dr},
(5.33)

where the constants of integration are unimportant so long
as X, is zero at » =0 and r = «. This duplicates the first-
order results of Ref. 11.

VI. CONCLUDING REMARKS

The formulation of perturbation theory presented in
this paper allows the computation of the corrections to the
eigenvalue and eigenfunction to any order in the coupling
constant. The only drawback is the hierarchical nature of the
quadratures. That is, before the nth-order corrections can be
evaluated, the corrections to the (n — 1) lower orders must
be found first. This means a total of n integrations are re-
quired to determine the nth-order corrections. Although in
certain cases such as the anharmonic oscillator it is possible
to perform the integrals analytically,'>"® it is in general nec-
essary to perform the integrals numerically. The advantage
of this formulation is that only the initial solution to the
specific state under consideration needs to be known, where-
as in the usual Rayleigh-Schrodinger perturbation theory
the complete set of unperturbed states must be known. In
certain problems this is a tremendous advantage.

I would next like to comment on the conditions under
which the Riccati form can be obtained. In general, it is easy
to show that a set of n linear homogeneous coupled first-
order equations for the functions F;, fori = 1, 2,..., n,can be
transformed into (n — 1) coupled first-order nonlinear inho-
mogeneous equations and one dependent first-order equa-
tion, whose solution can be written in quadrature in terms of
the other functions. That is, the transformation F, = G,
F, = R,G, i> 1, results in equations of the functional form

G'/G=fi(R,, i#]1), (6.1)
and

R =fiR;, j#1). (6.2)
Thus, in the case of the central field Dirac equation, which
can be written as two coupled first-order equations,'’ the
above transformation results in a single independent equa-
tion for R as in Eq. (5.26) (see Refs. 8 and 9) and a dependent
equation for which the solution may be written in quadra-
ture.
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If there are more than two original coupled equations,
the transformation still reduces the number of simultaneous
equations of the form of Eq. (6.2) by one with the other equa-
tion of the form (6.1). This procedure cannot generally be
continued because the coupled equations (6.2) are no longer
homogeneous. Thus the expansions of this paper are in gen-
eral applicable to problems involving one or two first-order
homogeneous or one second-order homogeneous equation.
If more equations are involved, the transformation given
above reduces the number of equations to be solved by one,
but the price is nonlinearity and inhomogeneity of the result-
ing equations.

This expansion is not directly applicable to the problem
of computing radiative corrections. These corrections in-
volve operator expansions, which involve normal ordering
and commutation relations and thus are different from this
function expansion.

Once the operator expansion has been carried out to
some order, however, it may be possible to utilize the pertur-
bation expansion of this paper for the parts of the operator
expansion that can be expressed in terms of effective poten-
tials. As an example, part of the first-order corrections to the
Breit equation in the absence of external fields can be calcu-
lated in terms of the Breit operator given by'®

Vi= —(@/rla,a, + (a; e, 1)/7],
with
E, = (0}},]0), (6.4)

where the standard bracket notation has been used and o,
and «, are the spin matrices for particles one and two, re-
spectively. The first-order corrections due to the effective
potential ¥, are expressible in quadrature. If V| is used as a
basis for computing second-order corrections, one gets quite
wrong results.'® If, however, the second-order corrections
are worked out from the operator expansion, Bethe and Sal-
peter'® have pointed out that part of this correction can be
expressed in terms of an effective potential ¥, given by

(6.3)

& d3k
V — —k-r
24 4mmc k ¢
X [at; * @, — [(@, * K)(a; - k)/K*]], (6.5)
with E, determined from

7o (Eo—E)

where the sum is over the entire basis of intermediate states.
In order to evaluate the corrections due to V, without the
sum over intermediate states, E,(V,) and Q,(¥,) must be cal-
culated, but have no physical significance. Instead, they are
necessary to compute E, = E,[V,, E\(V,), Q,(V,)] because of
the hierarchical nature of the expansion. Thus it may be pos-
sible to use this formulation indirectly in the calculation of
parts of the radiative corrections in systems of physical inter-
est.

In this paper I have shown that for a restricted set of
solutions it is possible to obtain a perturbation expansion
with all corrections expressed in quadrature for any first-
order nonlinear eigenvalue equation. Expansions for Riccati
equations have been developed in detail for important cases.
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The development of Sec. I1 is appropriate for the set of solu-
tions which possess neither zeros nor poles, and has applica-
tions to the Schrodinger, Klein—-Gordon, and Dirac equa-
tions for central fields. In Sec. III, the set of solutions
corresponding to excited states of the Schrodinger and
Klein-Gordon equations has been developed with the nth-
order corrections to an arbitrary excited state presented. In
Sec. V, this has been applied to a Klein—-Gordon particle in
an excited state with two nodes. In Sec. IV a general Riccati
equation for the set of meromorphic solutions has been ex-
panded with all results written in quadrature. This is appro-
priate for the Dirac equation for a general central field and
allows a majority of the first-order results of several pa-
pers® ! to be easily written down. An example is provided in
Sec. V. The results of Sec. IV allow the nth-order correction
to an arbitrary excited state to be written in quadrature. This
section is also applicable to more complicated Riccati equa-
tions, such as one obtained from the Breit equation for two
particles in the absence of an external field, which the author
is studying and will hopefully report on elsewhere.
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The product of # Dirac ¥ matrices is evaluated in terms of traces of at most (n + 3) ¥ matrices. This
leads to a method that can be used to generalize identities for a correlated product of ¥ matrices.
The expression for the » ¥ matrix product also provides a method for the evaluation of a scalar, a
pseudoscalar, a vector, an axial vector, and a second rank antisymmetric tensor associated with a
one-line fermion amplitude that drastically simplifies the squaring of fermionic amplitudes. The
general spin and particle-antiparticle dependence of the squared amplitude is given.

I. INTRODUCTION

In the evaluation of cross sections or lifetimes involving
spin } particles, one of the main practical difficulties is the
evaluation of traces of products of Dirac ¥ matrices. Al-
though the problem is a purely algebraic one, the nature of
the difficulty can be easily realized by noting that the trace of
a product of 2n ¥ matrices has (2n — 1)!! terms. Thus one is
limited in practice to consider those cases in which the num-
ber of ¥ matrices is small. Even if a symbolic manipulation
program is available the rapid growth of the number of terms
will sooner or later saturate the computer facilities.

It is therefore important to develop methods of compu-
tation and identities that maintain or reduce the number of ¥
matrices to a minimum.

Important steps have been taken in the past to solve
these practical difficulties. In particular, Caianiello and Fu-
bini' showed that the trace of an arbitrary product of ¥ ma-
trices is related to a determinant and, using this property,
obtained that many terms vanish when the trace of more
than 12 y matrices is taken. As a by-product, they got rules
for the simplification of expressions of the form y*.-y,,
where the dots stand for a given product of N ¥ matrices, i.e.,
an N y string. This last formula was also obtained indepen-
dently by Chisholm,? who in turn generalized it to the case in
which the contracted indices appeared in two different
traces or one in a trace and the other in a ¢ string. An elegant
algorithm was developed by Kahane® to deal with the prob-
lem of reducing the product of a ¥ string when a subset of
Dirac matrices in it is contracted by pairs. This in turn was
generalized by Chisholm.* Recently, Sirlin® has found that
additional simplifications result when the chiral projectors
appear in these products.

In this work a closed formula for the product of n ¥
matrices is found. The coefficients of the expansion of this
product in the covariant basis are given in terms of at most a
trace of (n + 3) ¥ matrices. Thus a general element of the
Dirac algebra, i.e., a sum of ¥ strings with given coefficients,
can be explicitly expressed in the covariant basis. The useful-
ness of this procedure is clear once one realizes that, in prac-
tice, one only knows the coefficients of the general Dirac
algebra element in terms of the y strings.

The plan of the article is as follows. In Sec. II we define
Dirac algebra, set up our conventions (that follow those of

*)On sabbatical leave from Instituto de Fisica, Universidad Nacional Au-
tonoma de México, Apdo. Postal 20-364, 01000 México D.F., Mexico.

576 J. Math. Phys. 26 (4), April 1985

0022-2488/85/040576-09$02.50

Bjorken and Drell®), give some useful known results, and
obtain the multiplication table of the covariant basis. Section
III contains the central result of this work, namely a closed
expression for the coefficients of the expansion in the covar-
iant basis of the product of # ¥ matrices. Section IV is devot-
ed to the development of identities in which a general ele-
ment of Dirac algebra is left and right multiplied by two basis
elements with one or two Lorentz indices contracted. These
identities, when combined with the expression for the pro-
duct of n ¥ matrices, lead to a method that can be used to
generalize the Caianello-Fubini-Chisholm-Sirlin identities
for a general Dirac algebra element. Seen in the light of this
generalization, the algebraic content of these identities is
clear: The tensor coefficient just vanishes when a Dirac alge-
bra element is sandwiched between y* and 7,,. In Sec. V, a
general method for the evaluation of squares of matrix ele-
ments of processes that contain distinguishable fermionic
lines is presented. The importance for this purpose of the
expression for the product of # ¥ matrices obtained in Sec.
II1 is then made clear: If one begins with a matrix element .#
with a product of # ¥ matrices, call it I, the squaring of it
gives the trace of (2 + 2) ¥ matrices, |#|*=Tr Z,I'?,
I', where 7, and & are particle projectors. This means
(2n + 1)! terms in the spin-averaged transition probability.
This is to be compared with (n + 2)!! typical terms that are
obtained using the method proposed in this work. In the final
section several applications are given. These include the
computation of a general vector and axial-vector matrix ele-
ments and how to get the spin dependence of a matrix ele-
ment out of the unpolarized case.

il. DIRAC ALGEBRA IN THE COVARIANT BASIS

Dirac algebra is generated by products and sums of four
basic elements 7°, 7', 7%, and 7 that satisfy the anticommu-
tation relation

{r v} =281, (2.1)
where g*” are the matrix elements of g

= diag (1, — 1, — 1, — 1); and 1 is the identity element of
the algebra. The simplest effective realization of this algebra
is given in terms of 44 matrices. This implies that any
element of the algebra is a linear superposition of 16 elements
that define a basis. An appropriate basis for field theory com-
putations is given by the covariant basis.” This basis is de-
fined by the unit element 1, and 7 # themselves, the six com-
mutators of the basic elements

© 1985 American institute of Physics 576



o*: = (i/2)[y*y’], (2.2)
the 7,

P = PPV = (e VYV 23)
where £,4,, is the Levi-Civita completely antisymmetric
symbol, with £y,; = — £°'%* = 1, and, following Bjorken
and Drell conventions,® we sum from O to 3 when repeated

Greek indices appear. We complete the definition of the co-
variant basis with the four “axial-vector” elements

rr.

In terms of the 16 clements a general element of Dirac alge-
bra is given by
r=S+iPy+V,y*+ A,y — /29T ,, 0", 2.4)
with the expansion coefficients S, P, V,,4,, and T,.
= — T, arbitrary complex numbers. Phases and signs in
these coefficients have been introduced for later conve-
nience, but they are mostly there to compensate the i factors
in the 7° and o* definitions. The name covariant associated
with this basis stems from field theory because when a ma-
trix element of I" between spinors ¥ = y '7° and ¢ is taken,
the resulting object,

xre, (2.5)
will be a Lorentz scalar if' S, P, ¥,,, 4,,, and T, transform as
|

a scalar, pseudoscalar, vector, axial vector, and tensor of
rank 2, respectively.

The most widely used relations among elements of this
basis are

r-r=1 (2.6)

{r*v’) =0, 2.7)
and the so-called Gordon relation

i =ilrt 't Hilreyl

=gk — g™, (2.8)

A less common identity is given by the product of three y
matrices

YRy =grY — g + 8T e Y. (29)
Another useful relation is

o*y = —(i/Qe*¥°0,, = —iG", {2.10)
where the dual of a second-rank tensor D,,, is defined by

D, =1EupeD . (2.11)
Using these identities one can construct the multiplication
table of the basis; this is given in Table I. The algebraic con-
tent of this table can be reexpressed through the product of

two elements of the algebra. Denoting by subindices the ex-
pansion coefficients of both elements

[\ L=(S, + iPyy° + ViaV® + iy VY — (/2T 10g0 WSy + iPyy° + Vo, v* + idy, V'y* — (i/2) T, 0™)
= (5,8, — PP+ V- Va+ Ay - Ay — AT\ (s T+ iS\ P, + P,S, + A, Vo=V, - Ay + 4T 10 TN
+(81Vag + ViaSs + A1a Py — Prdsy + T10, VE+V Ty + Th Al — AT 0
+iPVay — ViaPy+ Sidse + A410S; — T1ou VE+ ViETope + TiguAY + A4 T, Y~
—(i/2)2V1a Vs —EV\mﬁzﬂ +24,, Vo + 241,425 + T10gSs + $1Tsag + T1a Py + Py Tagp + 2T, Ty ¥5)0™.

Let us close this section defining the even and odd parts
of a Dirac algebra element with respect to °. We call even or
odd that part of a Dirac algebra element that commutes or
anticommutes with °, respectively. Thus, we can decom-
pose

Ir'=ry +r,, (2.13)
with

[I"g;,rs] =0 (2.14)
and

{(Is,v’}=0. (2.15)

(2.12)
]
In terms of the covariant basis
Iy =S+ iPy° —(i/2)T, 0" (2.16)
and
I, =V, y*+id,yr* 2.17)

Ill. PRODUCT OF 7 y MATRICES IN TERMS OF S-
EXPANSION COEFFICIENTS

Because every element of Dirac algebra stems from a
sum of products of ¥ matrices, it is important to study the

TABLE 1. Multiplication table of the covariant basis of Dirac algebra. The symbol §*# #*: = g*#gf* — g**gP# Elements in the first column multiply on the
right elements of the first row. The multiplication by the unit element has been omitted for brevity.

1 V’ y# YS},M P lad
v ! rre v — i
v -7 g —ige — gy 4 5 1801y, — g2 4Py,
r’v -7 +ge ey — — g +ig™t 5% 4Py, — e*¥Pyg
ad — 5 BBy g2y Sy 5By Sy vy, 8B _ jgrbuvyS _ j[g=rg P — gg P

+ gﬂvaa# _gBuUW]
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relation among elements of this algebra that are related
through products of ¥ matrices. In this respect, it is useful to
define

e = py# (3.1
where in the covariant basis

I'® =g 4 iplu)yS + VLM);ﬁ + id Lﬂ)};ya

— (/)T Mo 2. (3.2)

From the multiplication table or from Eq. (2.12}, one
immediately gets the relation between the expansion coeffi-
cients of I"''# and I'. Explicitly, for the even I"'* coeffi-
cients,

S =y (3.3a)

PH=gr (3.3b)

T = Vagh — Vgl + Ao, (3.3¢)
and, for the odd I"'# coefficients,

Vis=Sgr4 T, » (3.4a)

AW =T*#, 4 glP. (3.4b)

Here we remark that even (odd) I"'* coefficients are given
solely in terms of odd {even} I coefficients.

Consider next, the element of Dirac algebra formed by
the product of 2n y matrices, I">”. This element naturally is
purely even and therefore

[ =8 4 iP5 — (i/T 0. (3.5)

Multiplication of I" 2" by a ¥ matrix gives a purely odd ele-
ment

R A SRR A o (3.6)
calling y* the matrix that multiplies I">", we get

r2n+ 1 — an‘}/“ —_ r2n1p). (3.7)
If we multiply once more, this time by #”, we obtain

Iﬂ2n+2=r2n+lyv=1"2n+l(v|:r2n(yv). (38)

Using Eq. (2.12), it follows that

pintl = s = §ngs | T2k (3.9a)
R L ey Y L (3.9b)
and
S:+2 — gl — pluy (3.10a)
Pl panisy) — g2, {3.10b)
Tf,';,+2 — thlr;p\') — Vﬁ"""g; _ V%ﬂ‘ﬂlgz
F AL {3.10c)

After substitution of the first set of equations in the second,
we obtain

S = §inguy _ Ty {3.11a)
pis) = Tlmuv 4 p2nguv, {3.11b)
T2 = T2gev 4§20 + TYo8urs%.  (3.11¢)

In the last formula, use has been made of Eq. (A7c) to expli-
citly show the antisymmetry in «, 5.

From Egs. (3.10) and (3.11a)} we can formulate the fol-
lowing theorem.
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Theorem; The coefficients in the covariant expansion of
the product of n y matrices are a linear combination of .§
coefficients of at most a product of (# + 3) ¥ matrices.

In fact, from Eq. (3.11a)

T2naf = §2nga _ §2niahl) — |(g2nifa) _ g 2niaB)) (3.12a)
and from Eq. (3.10a)
y s _ g2nipa) {3.12b)

Combining this formula with Eq. (3.11c) and (A7), we get

A2 = TR0 g — 1§ 2 kB {3.12¢)
Finally, from this and Eq. (3.10b), we get
priavi — 420y
= J§netig . {3.124)

The relevance of this theorem is clear if one observes
that the § coefficients are directly related, in the matricial
representation of the algebra elements, to the traces (invar-
iants) of the algebra elements. From the well-known trace
theorems,® we obtain

§2" = S(“x“z""’zn) — %Tr(’]/al""}’az")

=:[aa,y-a,y, ], {3.13)

where a convenient notation has been introduced in the last
line. In terms of it, the recursive relation between S2” and
S22 reads

S = [aiar-ay, ]

2
= (— I)Pgalaj{azay“aj— 1854 1y }
=2

]

[

(3.14)

~
&

=) (- I)Jgala’{azas"‘aj— 1841702, |5
i=2
with{ — 1)’ = + 1 or — 1 if the permutation

(l 23 --~2n)
1j2-2n
is even or odd. Thus, when fully expanded, .S > has 2n — 1)1

terms. If no confusion arises, we will also use the square
bracket notation for “contracted” ¥ products. For example,

Trd by*d =a,bed, Tr Vyev*y”

=4a,bgd, [afuv]

=:4labudl. {3.15)
Using (3.14) we can obtain explicit formulas for the relations
{3.12). From (3.12a) and (3.14) we get

T2 = Z( — 1)g™ [Bay-a;,_,a;, ez, ] (3.162)

This expression can be still simplified to
n

TZnaﬁz_ __2 (_ l)i——jg‘wf
i‘:;l
xgﬁaj[al"'ai—lai+l"'aj-—laj+1"'a2n]’

(3.16b)

which is easier to use than the more compact looking form of
Eq. (3.12a} because the antisymmetry of the a8 indices has
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been taken into account. Equation (3.16b) has n[(2n — 1)!1]
different terms.

The V2" +! coefficient in Eq. (3.12b) cannot, in general,
be simplified any further. An explicit formula for it is

2n+1 . a
yaotl= z (— ) 'ge [ @10 i1 ]
i=1
(3.17)
which has (2n + 1)!! different terms.

In analogous form, we can find explicit formulas for
P"ua) and 42+, From Eqgs. (3.12b) and (3.12c), we obtain

A+le_ 4 2y, 4ol P2"(a2n+ 1)

241 L
= 2 (—1f+i+k [aya;_ya ;.
i<j<k=3
@\ Ay 1 Wy 41 ]Eaﬂﬁka- (3.18)
As we will see in the example below it is possible to reduce
the number of terms in Eq. (3.18) using the identity

g/,wgaﬁyé = guaéﬂybv + gpﬂeaycsv
— g#rEaﬁrv + gwgaﬁrv. (3‘ 19)

The number of terms in (3.18) is (2n + 1){(n/3), forn>1. Use
of (3.19) reduces this a bit, in any case this is smaller than the
(2n + 3)" originally expected.

We are now prepared to generalize Egs. (2.8) and (2.9).
Thus I'*is

yalyazya ya‘
— (ga,azga;,a‘ _ gala3ga2a4 + gala‘gazag)
. i[galazo_asa‘ _ ‘11‘130,“2"4 + ga.cuo_aza;
+ gaza,o_a,aq _ ga,a‘Ualaq + ga,cuaa,az]
+ i1, (3.20)
For I'’®, we get
7017427037“47/’5

= [a,a,0:0,17" — [a,aa50517™

+ [aaz05]Y™ — [aesaa5]Y™ + [aasa0s]y™

+ l{ galaze"3“4as" _ ga1a3£“2a4as"

+ gala4£a2a3a5v _ galasg"lazaa"

+ gazazgaxacas" _ gazacgalasas"

+ ga2a5€ala3a4" + ga3a4£ala2a5"

_ gaaas£a142a4" + g‘h“sgalazas"}rsyv. (3218.)

Using (3.19) simplifies the term 9° ¥, . We get, using it twice,
YR
= [@,@,2:2,]7" — [@,2,050517™
+ [aamas)y™ — [amaes]V™ + [aaaas17™

o 10y qA3X405V ayay Ay asV
+l(gl2€345 __g13£245

a3 X A0V W5 X103V

+g8 "¢ +g %
_ gaprga,azaga, + ga,vgalaza;‘a‘) ysyv (32 lb)
which has six, instead of ten, factors in the °y” term but in
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which the symmetry among the indices has been lost.

IV. IDENTITIES FOR CORRELATED y MATRICES’
PRODUCTS

One of the possibilities that the theorem of the previous
section brings out is the systematic development of identities
for correlated products of ¥ matrices. Examples of such
identities are

Y. =4 (4.1a)

Yy, = — 29~ (4.1b)
These identities find their use in higher-order calculations in
field theory and in the simplification of expressions for the
crossed terms of the square of identical particle amplitudes.
In particular, Sirlin® has found recently several identities of
this kind and has used them in higher-order computations of
gauge theories.

Perhaps the most clear way to understand why the con-
traction of two y matrices leads to simplifications is to ob-
serve that

y*Iy, =v"S+iPy’ + V,v*
+ iAaysya - (I/Z)Tuﬂaaﬂ)Yu
=2(28 — 2iP‘ys -V, + lAa‘}/sra) (4.2)

This means that the resulting coefficient of the covariant
expansion is simply the original coefficient times a factor.
Besides this, the tensor coefficient is annihilated by the
y*#I'y, operation. From Eq. (4.2) and the formulas (3.13),
(3.16b), (3.17), and (3.18) we can, by a simple substitution,
obtain any relation of the form

ey, =y v ™y,
B [4(3 M __pmA) ifN=2n,
T =V L id 2 Y5R), fN =204 1.

(4.3)

We can now explore relations of the form (4.2) for other
basic element. From the 3° dual properties (2.14) and (2.15),
it is clear that

V’Iys=8+iPy’ —(i/2QT50™ — (V. 1* + A, V1),
(4.4)
From this and (4.2) we get
YYry’y, =4 —S+iPy) + 2 — V" + id. Vv
4.5)

These formulas form the basis for a set of relations of the type
4.3).

Less direct relations emerge from the doubly contract-
ed products. For this case we have

YV Iy, Y, = 16(S +iPY°) + MV, 7" + id, v°PY)), (4.6)
and

Y'Yy, = —8S +iPY) + 4V, v + id, V’v?).
(4.7)

Subtracting the two last formulas, we get
Y*¥T0,, =12(~iS+ Py) (4.8)
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and

o*Ta,, =12(S + iPy’). 4.9)
The last relation shows that the o#* sandwich of an arbitrary
algebra element has annihilated all but the S and P expansion
coefficients.

Let us finally quote two mixed basis elements contract-
ed products

v Lot = (=3iV) + i(3id ")
+ (3iSg;, + T, *°
+ i(3iPg;, + iT?, W'y
— (/2 — iV, 8% + id, &% )0,
and
oIy, = (V") +i(3id ")y’ + (- 3iSg}, +iT ", )"
+i( —3iPg, —iT %, )°y”
— (/20— iV, 8% + id, €%, )0
From which a new set of identities can be derived using the
relations of the previous section.
We can therefore induce from these considerations a
simple rule to obtain identities among correlated products of
y matrices: First, derive the identity for a general element of

Dirac algebra. Then use the formulas for the expansion coef-
ficients of products of ¥ matrices.

V. USING THE COVARIANT BASIS

A. Squaring of matrix elements: Spin and particle-
antiparticle dependence

Let us consider a one-line spin } fermion amplitude,
such as the one in Fig. 1. In terms of the incoming, 7, and
outgoing, f, spinors the amplitude can be written as

Mg = il e, (5.1)
where I is a 4 X4 matrix that depends on external param-
eters (polarizations, momenta, etc.) of any particle or source
that participates in the process. Plane wave spinors «-, and
«; may correspond to particle, », or antiparticle, v, states. In
general to make contact with the experiment one must take
the square of .# ;. The standard® procedure leads to

| 5> =Tr[TA(p)Z (6.)TA (p; )2 (5],

(5.2)
where
T'=yT'"Y, (5.3)
and the energy A and spin 2 projectors have the form
A(p)=(p £ m)/2m, 54
Z(s)=(1+ 79V (5.5)

with p-s = 0 and the signs in the energy projector correspond

to particle { + ) or antiparticle ( — ) states.
J

. B
s+ 2o+ 27|

Ao st s
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NLLL
-

FIG. 1. One fermion line amplitude considered in Eq. (5.1). The ball might
contain within itself other fermion lines provided they are distinguishable.
Wavy lines denote arbitrary bosonic interactions.

When expressed in terms of the covariant basis, I" has
the form of Eq. (2.4) with the expansion coefficients depend-
ing on external parameters. We can also expand I in the
covariant basis. We get

T'=S+iPy +V, "+ Ay’ v — (i/2T.z0%, (5.6)

§=S‘, F=P*9 7a=V:’
A, = —A2, T,=—T%. (5.7)

Using the multiplication table, we will obtain expressions for

IN=r-A(p)-Z) (5.8a)
and for
=T -A(p):-Z(s) (5.8b)

In terms of I', and I',, the trace in Eq. (5.2) can be evaluated
immediately. Since the only matrix with nonvanishing trace
of the basis is 1, we get from Eq. (2.12)

| | =4S,\S, — PP, + V- Va4 4, ‘Az—iquﬁT‘sz)-

(5.9)

Inthe expression (5.8) the order of A ( p)and 2 (s) projec-
torsisirrelevant aslongasp - s = 0. Because one is frequent-
ly interested in spin-summed probabilities we consider first

I'(pm)=I-A(p)
Performing this product, we get for particles

S(pm)=}S+(V-p)/m), (5.10a)
P(p,m)=4P+ (4 -p)/m), (5.10b)
V.(pm) =4V, + T, ,.(p"/m)+S(p,/m)) (5.10¢)
A (pm) = YA, + (p*/m)T,, + P(p./m)) (5.10d)
T z(pym)

= _;’[Taﬁ + %(Va Ps — VaPa) + %'eaﬁ;wA “Pv]-

(5.10e)

If, instead of a particle projector, one needs the antiparticle
projector, one simply changes the sign of p in this formula,
without changing the sign of pin S, P, ¥, A4, or T. From this
relation for I'" ( p,m), we can get the general spin dependence.
Computing

I (pm;s) =T (pm)\Z(s)=TA(pm)Z(5),
one obtains

(5.11a)

(5.11b)
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1 i . Pa | . i p*
Va(P,m;J)=-;[Va +7n—£ampp“V 4P+S7+1P.4a ——;;(A csPy — A ps,)+ Taﬂ—’;-ﬁ-u”Tﬂa], (5.11¢c)

[y

. . o
A (pm;s) = T[A,, + ie,,mpu 4P — iSs, + P‘%‘:— + —;—(& Vp, —p-Vo )+ %-TW +is ﬂrﬂa} , (5.11d)

. - _ u
Taﬂ(p9m;‘4) = %—[Taﬁ + L(pMTuﬁda _p#Tpaéﬁ) + ieaﬁ,uv(T#p% + £m_3+ Vﬂ)év

1 1
+ —’:—1-{.4ap5 — Pasp)P + —( —Pa V) + il2,4p —4 a?g) + ;n—eaBWA “‘p’“}. {5.11¢}

The evaluation of the square of the amplitude becomes a matter of simple substitution of Eq. (5.10) or Eq. (5.11)} into Eq.
(5.9) taking into account Eqgs. (5.7) and (5.8). Arbitrary polarization of incoming or outgoing states can be obtained using Eq.
(5.11). If antiparticles instead of particles are involved it is enough to change the sign of p in Egs. (5.10} or Egs. {5.11) without
changing this sign within S, P, ¥, 4, or T.

One can now appreciate better the importance of the theorem in Sec. III because using it we can write any amplitude of
the form (5.1) in terms of the covariant basis. Thus, the method of squaring amplitudes presented above becomes practical.

I
B. Two cases: The vector plus axial-vector amplitude Py, Pi,
and the vector plus scalar case +(V AL+ V"As)—-‘ g, (5.13)
In the actual substitution of the general expression for I"
we do not expect a great simplification of the final result.
However, in many applications only some of the coefficients
are nonzero. We consider first the unpolarized case in which

We note that the expression is identical for particles or anti-
particles. Furthermore, if ¥V and A are relatively real, as in
the example below, we get

I' has only nonzero ¥ and 4, i.e., W P= V2(1 Di 'P/) A (1 bi Pf)
= V1~ -4 1+
=V, ¥+ id, v, (5.12) ,Zp,:,l al m? m?
which appears frequently in low-order perturbative calcula- ,
tions of electroweak theories. Substituting Eq. (5.10) into Eq. +@2/m)(p; - VprV +pi - Aps - 4
(5.9) one finds for the spin-summed probabilities
ZI.,lﬁ |2 + ‘s"‘g‘"’V,,tA‘gdr)fﬂL P ) (5.14)
s B\ Poa The second case that we want to analyze is the amplitude
=V, Vs [ gaﬂ(l P oy ) 4 PiPr ¥ PRy } with nonvanishing vector and scalar components. We will
m* m? give the square of the amplitude with and without spin for
pP 4 pPps this case. The particle—particle amplitude is
+A,,A"[ g,,,g(l LB pf)+p,pf +2p,pf] hep p p
m M=+ V)u,. (5.15)
J
Squaring it gives, using Eqgs. (5.11) in (5.9},
| M |2 =THIA,Z,TAZ,)
= -H(s+ &, V)(S* +2. V*) — V)V ) + (V +lesy L aﬁmprw)
m

% V"’+—S* L gmrory y3, ,)+(-is.¢,.a W ps +4V e, ,.‘,)(—is* a_Lys. ., 4o
( m Pre 4 m Pt + m P K m Prs
i 1. 1
G —V*.s “)———[w ,(—~S?+ V")A,T+— V., pg — » ]
- 1Pr 5 | Easer| P m( Pig — Vg Pia)
. 1 No o 1. .
X [tf‘."?pa(-—sm ‘oF+V ")éf +—’;(V pf—V* pf)]}, (5.16)

simplification of this equation with the aid of the Appendix gives
1 pi-p pi-p iPr +Pipf
|/}2=Z.{[Ss*(1 f)-i—V V'( f)+—(SV”'+S*V) (p,-+p,)+V,,Vgp—-—-———pfpmpof](l

> - By ’-’f’
bl =654 Voot (Sp 4 ) (S v ) o
m? Am T Nom ‘
*

[pra SV #—SV )+ VeV ——pf)"} * ‘éf“‘)v}'

(5.17)
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This expression reduces in the case of a vanishing 4, and s, to

Bpa
I/|2=__[SS*(1+1’1 pf)+V V‘(l p'mpf)-{-—(SV‘ +StV) (p: +Pf)+V V*&i‘;p'—pf] (518)
m

Let us now see how these rather general formulas work in a more specific example.

r
C. An example: One photon emission of an electron in lomb potential this will lead to the Bethe-Heitler formula. If
an external field the photon energy is small the emitted radiation is, of course,

Let us see now how the method outlined above worksin ~ bremsstrahlung. Two Feynman diagrams contribute to this
an example. Consider the lowest-order amplitude for emis-  process, they are depicted in Fig. 2. Calling k the photon
sion (or absorption) of a photon by an electron in an arbitrary =~ momentum, ¢ its polarization vector, and .o/ the Fourier
external electromagnetic field. If the external field is a Cou-  transform of the external field, we get

1
2 =ﬁ(pf)[ —(;:f; - Z:‘Z)Jé

o fkédf + Ek—dfék ]u(p,), (5.19)

where the usual manipulation* of the amplitude has been done to separate different powers of k. Our method now requires us
to express (5.19) in the covariant basis. This can be always done using the theorem in Sec. III. For the problem at hand it is
enough to use Eq. (2.9) for the triple product of y’s, which is a particular case of the product of n ¥ matrlm given at the end of
Sec. ITI. We have, using Eq. (2.9),

kéd =ke - oA — k- oA + ik, ,\Vy,, Hék=ke o — koA + e €5k, )1Y,.
Substituting this in Eq. (5.16),

- €D €Dy 1 1 1
sty =atp| - (F2 - 2ot + H ot e sk, k- ey
e k-p. k-p; k-p,  k-p,

17/ 1
i ko P p,, u( p; 5.20
+ilglam = e e [ ute (520
From this we can identify the gauge invariant expressions for " and 4:

€-p; e-pf) 1( 1 1 )
Va=—( —_ da+_' + (e"g{ka_k'ﬂea)’
k-p; k-pf k.-p, k-p;

A, = —1-(——’— - )k He ot %, g (5.21)
k- -0 k-p; »
We can now substitute this into Eq. (5.15) and integrate over the required phase space in order to compute a cross section. We
remark that the evaluation of the square of the matrix element can always end when the coefficients of I" in the covariant basis
are identified. In fact, this will be the most compact form of expressing this square in most cases. The vectors ¥ and A4 are the
natural vector and axial vector of the amplitude.

If one needs to make connection with other expressions for |.# ;| the formulas in the Appendix for products of the Levi—
Civita tensor can be very helpful. Using them, we have obtained the following form of the spin-summed |.# ; |* containing
only scalar products of .7, ¢, k, p;, and p;:

. p. . 2 L. e Ap, A AV x 2:"6 . €
Zlvllﬁlz=('E P _ B pf)[d’(l—p' f’)+2”' p{ ]+ (- k) [8(1—" ff)+ PPy ]
k.-p, k-ps m k-pk-p, m m

2k-de- oA 1 .sa(ez ( 1 )]
- -k k - o —p; L) —— —
S f\p, €-py+ps-ke-p) [(pf —pi - A) bk B E

Py kp; - [ 2( 1 )2 2 €p; €-ps
+———-— e —— +4(€~.!z{)-———— L
k-p, k-ps pi~kps-k m?\k-p, k-ps

€-ppr- A €-pp-A A €Pr €-P;
x|2e. o(p, - A + i-.;a(—Zk-.xa{( + )+&l(——— )(k p,—kp)]
[ (ps ¥4 ) k-p, k-Pf k.pf k-p; (;22)

Sy

I
which leads to the Bethe-Heitler formula. The first term of it needed is S* (in the development of the triple ¥ product),
is just the bremsstrahlung soft photon amplitude. which contains three independent terms. This can be com-
We observe that, in the method of evaluation of |.#;|>  pared with the S ® that appears in the usual evaluation of the
that we have followed, the largest S coefficient that hasbeen  spinlessform of Eq. (5.2). Here, S ® has 7!! = 105 terms. Equa-
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k,e

o

FIG. 2. Lowest-order Feynman amplitudes of photon emission. Wavy lines
are photons, .« is a general source. The emitted photon has momentum &
and polarization €.

tion (5.19) has been, in fact, verified with this method® or
with more recent methods. '’

VI. FINAL REMARKS

We have shown how the use of the covariant basis of the
algebra of Dirac leads to a general procedure for the evalua-
tion of squares of one-line spin 4 amplitudes. This method
saves, in general, a lot of effort in this evaluation. The meth-
od is based on the theorem of Sec. III in which the multiple
product of » ¥ matrices was computed in terms of the S
coefficients (traces) of at most (n + 3) ¥ matrices. Further-
more, this theorem brings out additionally a systematic pro-
cedure for the generation of generalized identities for corre-
lated products of ¥ matrices of Dirac algebra elements, as
was pointed out in Sec. IV.

A by-product of this method is the observation that, if
parity is conserved, each physical amplitude naturally de-
fines a scalar, a pseudoscalar, a vector, an axial vector, and
an antisymmetric tensor of rank 2 in terms of which the
probabilities of the physical process can be evaluated, as was
done in Sec. V. The spin dependence of this probability for a
general one-line process was expressed in terms of these five
objects. These five objects (S, P, V, 4, T') are themselves spin
independent and are also independent on the exchange of
particle by antiparticle.

The method of squaring amplitudes can be extended to
the case of identical particle scattering. The only complica-
tion is the presence of the crossed term in the square of the
amplitude. Such a term implies a trace of the form

Tr[(rl@(Pl,-’l)l_-‘l-@(th)ry@(Pz,Jz)fzg(Py%)
+ D P(pros )1 P P3533) 2P ( Pass ) Passa) s

with Z( p,s) = A ( p)2 (s). This traceis, in general, more diffi-
cult to evaluate than the one in Eq. (5.2). However, some
simplification arising from correlated products of ¥ matrices
usually occurs.

Let us finally comment on the squaring of amplitudes
method presented in this work as compared to other ap-
proaches to the problem. We have in mind the Jacob and
Wick!! helicity formalism and the recently proposed projec-
tor or covariant polarization method of Caffo and Remiddi.?
Both of these two formalisms exploit the properties of the
initial and final wave functions. The work here presented
concentrates instead on the “transition operator” I. We
therefore regard the two approaches as complementary, the
use of one does not prevent taking the other. The main limi-
tation of our approach is its present restriction to spin § parti-
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cles. This, however, might be overcome in the future using a
formalism of Dirac-Fierz-Bargmann-Wigner.'* This ex-
tension has been done for the Caffo-Remidii work by Pas-
sarino."*

On the other hand, the main advantage of the method
here proposed is that one does not foresee the technical trou-
bles faced when helicity-type amplitudes are used. These
problems stem from the kinematical singularities that often
appear in the helicity states.
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APPENDIX: AUXILIARY RELATIONS

Let us first define the generalization Kronecker delta of
2n indices, each of which can take p values, as

P (ZlaZ"'an)
lﬂZ"'ﬂn
. Ay
1, if P(B ) is even and all a in-
1B dices are different,

. gy, R . .
= -1, ifP (B 5 ) is odd and all & indices
1"Fn/ are different,

0, other cases,
(A1)

where P denotes a permutation of the lower indices with
respect to the upper indices and all indices @ must be differ-
ent among themselves. In terms of this delta, we have

0 1 2 3
E#"aﬁ=§ v a B.

We remark that the position of the indices of the generalized
Kronecker § bears no relation with covariant or contravar-
iant indices. Taking this remark into account and raising
indices with g*” = diag(1, — 1, — 1, — 1), we have

o1 2 3
g g )
(M v a B
From the last two formulas it follows that

a a a a
aayasay, . 1 2 3 4
€ €8,6,8: 8 = — 5(51 8, B, 34)- (Ad)

On the other hand the general relation between 8 of succes-
sive orders is

a, a,a, a a, az-a
) =8 ‘)5 )
1 Bz"'ﬂn ) 1 2 BS"'Bn
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-o(5 ) (5 o)
ok o)

a; a, as-a,
~o(@)s( =),
(Bn Bz ﬁs »81

Therefore

P (a a,-a,

E d a ﬁZ"'ﬁn

a=1

aya,

)=(p_n + 1)6(B2 "ﬂn

In the special case of Eq. (A4), we have

and

584

a,a,a
o ayaaa, - _ 2434
& Capn, = 5(323334)’
a Bazay . a3a4
= =255 )

aBpay _ a,
£ Eapup, = — 66(ﬁ4)’
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(AS5)

). (A6)

(A7a)
(ATb)

(A7c)

£y ¢ = —4§1l= —24, (A7d)
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The relation of a theory of countable sets to the field equations of physics
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The systematic development of mathematics is based on the theory of sets. We present an axiom
system in which, in contradistinction to the usual theories, it seems possible to define formal
provability yet some useful mathematics can be derived. Some features of the theory suggest that
these axioms can provide a possible new foundation for mathematical physics.

The usual foundations of the theory of sets are the axi-
oms of Zermelo, Fraenkel, and Skolem (ZFS). The ZFS sys-
tem includes the axioms of extensionality, schema of separa-
tion, pairing, sums, infinity, power set, schema of
replacement, choice and regularity.! This system has been
extensively studied and is considered by most experts to be
consistent.

In particular, the axiom schema of separation (AS) has
been the subject of attention because of its role in certain
paradoxes. It is well known that AS can be derived from the
axiom schema of replacement (AR).?

We begin our discussion by deleting AR (and also AS)
from ZFS and designate this system as ZFS — AR. This is
our point of departure. To this system, we adjoin an axiom,
which we shall call the “axiom of bijective replacement”
(ABR), as follows,

(ABR) Vxed Iy (¢ (x, y) AVx' Vy'(d(x', )
—x#x'op#y)
—3U [Vs se UTtedd (t, 5)],

where 4 (x, y)is any formula in which x and y are free and Uis
not free. ABR says that a set is defined if there is a prescrip-
tion replacing one-for-one all its elements by the elements of
another set. From this replaceability, we can show, using the
axiom of choice (AC),” that AS and ABR are independent
and that AS + ABR = AR. Thus ABR restores as much of
AR as we can without reintroducing AS.

We now adjoin another axiom, “all sets are countable”
(ASC), which can be generally written as

(ASC) VYU 3M VxeU 3n
[(x, njeM AV Z neZ A Vy((y, njeM—y = x)),

where Z is any set defined by the axiom of infinity (AI).*
Here, the set of all natural numbers N is the minimal set
defined by Al ASC, with AC and ABR, says that from any
set there is a one-to-one mapping onto a set of natural
numbers.

We designate the resultant theory ZFS — AR + ABR-
ASCorZFS — AS + ASCasT (see Ref. 5) and shall attempt
to show that T contains all sets of physical relevance.

We consider first some important foundational differ-
ences between ZFS and T. The statement “A subset S of U
exists with the property ¢’ is written

3§ [VxelU xeS—y(x)].

In ZFS, this statement is always valid by AS. In T, on the
other hand, the validity of this statement or the validity of its
negation must be shown. For example, the well-known Can-
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tor proof, which in ZFS, through the use of a diagonal set,
shows there is no one-to-one mapping between an infinite set
and its power set, is instead a proof in T of the nonexistence
of that diagonal set. Also, transfinite recursion, often used in
ZFS, is not available in T. To show this, we write down the
general statement of transfinite recursion for sets of natural
numbers

VneN JueN (¢ (n,u) A\VmeN YveN
(@ (mp}>m#nevF£u) A((@ (0,w) A flw)

AVIeN Vpel A ¢ (p,x) A px)—d (Ip) A ¥»))
—VgeN 3zeN ¢ (¢.2)¢(z).

The proof of this statement as a theorem of ZFS is well
known. However, what is actually proven is the conditional

3S'[VxeU xeS'—&>~¢x)]>S' =0,

where U is the set defined by ¢, using ABR. In ZFS, the
antecedent in this statement is always valid by AS and,
hence, by implication, the set S is the null set and the trans-
finite recursion theorem is proven. In 7, on the other hand,
the set S is the null set if and only if it exists and thus the
proof fails.

As a result, only those parts of mathematics not requir-
ing transfinite recursion are derivable in T. For example, the
existence of the set of all prime numbers cannot be shown.
We can show, nevertheless, the basic operations of addition
and multiplication of all positive and negative integers.S Fur-
thermore, we can establish, using ABR and the axiom of
sums (A S),” the existence of the set of all fractional numbers,
sequences of distinct fractionals as bijective maps from the
natural numbers and the real numbers as limits of sequences
of distinct fractional numbers. The set of real numbers exists
and is countable.®

The investigation of analysis in the space of countable
reals is underway and proofs are still naive. It is, however, a
complete metric space. One can show in T that every bound-
ed set of reals has a least upper (and greatest lower) bound.
Whether the space is compact and in what sense it is a con-
tinuum are open questions.

Let us now construct sets which have physical rel-
evance, that is, functions having a range and domain of con-
tinuous real or complex variables. We first state the simple
result that the range of a constant function is given by AC.

" To show the range of nonconstant functions of a real vari-

able, we write down the general statement that a mapping
# (x, u) of real variables is bijective, letting the domain (the set
of all x) be the open set (0, 1) and restricting u to the same set,
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[Vx<(0,1) 3uel0, )¢ {x, ) Ax'€0,1)

Vu'e(0,1)3C, ,,Cy, (g (¥, ) (x" — X)

<Cx,u (u - u’) A (u - U’)QC&,’ x (x - x'))]'
The range (the set of all #) exists by ABR. We now introduce
the postulate that C, ,C,,=1AC,,>0AC, ,>0.
HenceC, , and C, , each havealeast upper bound given by
the reciprocal of the greatest lower bound of the other, and
we have

[Vxe(0,1) 3ue0,1)[4 (x, u) A 3C,C,
Vx'e(0,1) V'e(0,1) (6 (', o)
—x —X'|<Cilu —w'| A Ju — w'|<Cylx — X'|)],

where C; and C, are upper bounds. This result may be
termed a bi-Lipschitz condition. We can show that u, being
bounded, is continuous and differentiable, from the fact that
bounded monotonic sequences converge. An identical result
is obtained with C, ,C, . = 1AC,, <O0AC,, <0. Further-
more, simply by scaling the variable #, the range can be made
equal to the domain and the quantifiers can be equivalently
Vu3x. We recognize that, repetitively applied, our postulate
means “There is a set of equivalent real varaibles, x;,
X3 .. Xp, in which any change in one is accompanied by
some change in all the others” and may be interpreted physi-
cally as universal coupling.

From these monotonic pieces, one can construct, us us-
ingA4 =, functions which are not in general monotonic but yet
are bi-Lipschitz everywhere except for isolated missing
points. These functions are thus semicontinuous and can be
shown to be of bounded variation. If ail of the relevant re-
sults of analysis based on ZFS can also be derived in this
theory, we obtain a Hilbert space. The fundamental equa-
tions of physics describing field phenomena in space-time
are well known to have general solutions which form such
Hilbert spaces.

To show functions of a complex variable, an analogous
proof uses bijective mappings of real pairs (x,y) and (4, v).
Conformal mappings w = u + iv = f{z) + f{x + i y})are ob-
tained from the postulate (C,, =C, JA(C,, = —C,,)}
AC,, =C,INC,, = —C,,). The result from (C,,

= - v,y) A (Cu,x = u,y) A (Cx,u = - Cy,v) A (Cx,u

= — C,,) refers to mappings where the orientation is re-
versed. These derivations may be extend to higher dimen-
sions.

We are left with the question, however, as to why phys-
ics would have a special preference for the theory T, since the
same results could be achieved in ZFS, albeit with an ad hoc
assumption of bijectivity. Is there any link between math-
ematical foundations and natural events? An answer may lie
in the general treatment of provability due to Tarski. Tarski
has shown that, in any consistent theory, one cannot define
both the set G of all formulas #(x) and the set ¥ of all such
formulas which are provable.® In set theories rich enough to
contain recursive arithmetic and also in which G and ¥ are
sets, such as ZFS, it can be shown that the set G is definable
and hence the set V cannot be, leading to his result that
provability cannot be defined in those theories. When viewed
within T, even though basic arithmetic is interpretable, with-
out recursion one cannot show G to be a set, since there is no
formula generating just those strings of symbols that are syn-
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tactically correct, i.e., there can be no prescription for mean-
ing in a system which is rich. This allows a possible extension
of T, call it T*, obtained by now adjoining to T an axiom that
the set Vis definable. This axiom can be written

{AV} 3IV[VneN neVe>IpeN Dem (p,n)],

where Dem (p,n) is that arithmetical formula in T* which
represents the statement, “The entire preceding sequence of
provable formulas, whose aggregate Godel number is p, is a
proof in T* of the formula, which is equivalent to none of
those preceding, whose Godel number is n.” With this, we
can now show the existence of undecidable formulas in T*.
We first note that there is a one-to-one mapping from the set
¥ onto a set ¥ which contains just the Gédel numbers of the
negations of the formulas whose Goédel numbers are in V.
The set V is definable in T*, hence ¥ is definable and their
union VUV as well. If this union were equal to G, then G
would be definable but that contradicts the Tarski proof.
Thus VUV #G. It follows that there are undecidable formu-
las in T*. The existence of undecidable formulas can be con-
sidered the price we pay for provability. It seems reasonable
to require provability in the description of natural events yet
not to be deterred by undecidable formulas. We would thus
prefer T*, if it is consistent, as a foundation for mathematical
physics.
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11
I
v
v

Yn, peN
Vn, peN
Vn peN
VneN

Vn,peN

4, +Ap =An+p!

4,4,=4,,,

4,#4,on#p,
x=A,>x=48,Vx=4,V..x=4,,
4,<4,V4,<4,.

These five axioms are the minimal subtheory for which all recursive sets are
definable. Thus some recursive concepts are not definable as sets in T. Fur-
thermore, all the Peano axioms except the induction axiom can also be
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obtained in T. Peano arithmetic without induction is not essentially unde-
cidable.

7AZ says that a set exists which contain exactly all the elements of the sets
included in a set of sets, written as V4 3B Vx [xeB—~3C(xeCA Ced )}.

#Derivation of the reals is given in D. J. BenDaniel, “A Theory of Countable
Sets,” to be submitted to Symbolic Logic.

°G and ¥ are sets of natural numbers which are obtained by any suitable
Gédelization procedure for expressions. The Tarski proof is discussed in
detail in the reference of footnote 6 where a diagonal function D is utilized
instead of the set G.
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We define, on the algebraic Dirac spinor space ¥, some operators D+ and T+ . By means of them
we show how the fundamental operations of Hermitian conjugation, complex conjugation, bar
conjugation, and so on may be introduced in the Clifford algebra approach. These definitions
depend on the geometrical property of the pure imaginary unit / of the Dirac algebra D, , and are
the same only for mod 4 dimensions of vector space-times R** . Furthermore, on the set ¥ X ¥ we
introduce equivalence relations R , and define bijections y , between ¥ X ¥ /R , and D,,. We
investigate some properties of y , and give the necessary and sufficient conditions for ueD,, to
belong to some minimal left ideal of D, ,. Next we use the decomposition of the Dirac algebra D,
onto the Dirac spinor spaces to demonstrate two different ways of an action of any element
seSpin(x, ). These considerations throw a new light onto the problem of the covariant derivative
on the bundle of algebraic spinors over a space-time manifold.

Let us assume that we have an n-dimensional real vec-
tor space-time of signature (s,¢ ) which we shall denote by R%*.
Let R,, be its corresponding universal Clifford algebra.' It is
known that we can find the faithful matrix representation of
any Clifford algebra R, which exhibits its character as the
real algebra of endomorphisms of some F-linear space
S = S(s,t). (Here F denotes a division ring given by entries of
matrices in the matrix representation of R, ,.} Furthermore
we know that S can be realized by any minimal left ideal of
R, .. But to determine a minimal left ideal of R, , we have to
fix some primitive idempotent f = f? (see Ref. 2). Let {¢,},
ie(l, ..., s + t ) be an orthonormal base of our vector space R**
and let {ex} be the corresponding canonical basis of R,,
(here K denotes a multi-index), i.e.,

1<iy < iy < i <. (L.1)

It can be shown? that for any Clifford algebra R, there
exist y = ¢ — H (¢t — s) pairwise commuting, nonannihilating
idempotents of the form

€x =€ €,

31 4 ex), (1.2)
such that their product
S1=(1/2%)1 + eg (1 +ex,) (1.3)

is a primitive idempotent.* Now, when we vary independent-
ly the signs ¢; in the product

(172¥)(1 + €sex, )-(1 + e )s (1.4)

we obtain 2¥ orthogonal primitve idempotents which we
shalldenoteby f*,a = 1, ..., 2¥ . They determine the decom-
position of R,, in the corresponding to f§ minimal left
ideals, i.e.,

2

X 2X
R, =R, f"=@aS5"
a/l a/l

(1.5)

For the simple Clifford algebra R,, we can always take
the matrix representation of R, in which the ath column

* Present address: Institut fiir Theoretische Physik der Technischen Uni-
versitit Clausthal, 3392 Clausthal-Zellerfeld, West Germany.
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represents S (see Refs. 5 and 6). Thus the decomposition
(1.5) is equivalent to the decomposition of the matrix algebra
in its columns. In a general case, entries of a matrix realiza-
tion of a given Clifford algebra R, ; belong to one of the rings:
R, C, H, R, or °H, respectively, depending on the concrete
dimension % = s + ¢ and the concrete signature (s,# ). For this
reason we are interested rather in the corresponding Dirac
algebra D, instead of the Clifford algebra R, , itself. By de-
finition,” D, , is algebraically equivalent to the complexifica-
tion of the corresponding Clifford algebra R,,. More pre-
cisely, for even-dimensional vector space-time R*, D, is
determined as a real Clifford algebra of appropriate enlarged
vector space R**', s’ +t' =5+t + 1, such that

R,,CD,;:=R,, =RE. (1.6)

Again, Dirac spinor space ¥ (s, ) is, by definition, given
by a left minimal ideal of D, ,, i.e.,

Vist)=S(s't). (1.7)
Whens — ¢ = 0,2 mod 8, R,, isrealized by the real matrices
andinadditionwehavey (s,¢) = y (s',¢ ). Thismeans that any

primitive idempotent f of R,, can be taken as a primitive
idempotent of R, ,, = D, ,. Hence in this case

¥(st)=R,, f=(R,, )€ =S(sr). (1.8)
The above isomorphism can be obtained by taking as the

basis elements of the Dirac spinor space ¥ (s, the basis ele-
ments of S(s,¢ ).

Let us fix some even-dimensional vector space R*',
s + t = 2r.Its Dirac algebra D, , isrealized by a 2" X 2" com-
plex matrix algebra C(2") (see Ref. 8). Let f be a primitive
idempotent of R, ,. = D,, of the form (1.3). Let {p,,....on },
N = 2" be the basis of the corresponding spinor space S (s',¢ *).
We can assume that

pi=u;f, i=1.,N, (2.1)
with #, = 1 and u; = e . [Here, S; is a multi-index given by
{1.1).] Thus any spinor ¥ (s,t) = S (s',t ') can be written as
¥ = uf, where
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u=vyu;, eC 2.2)

Any primitive idempotent f determines not only the left
minimalideal Ry, f butalso the right minimal ideal /R, ,-
Hence it is obvious that any element g (s,¢ ): = fD,, can be
written as

b =fu,
with u given as above, i.e., 4 = ¥, u;.
Let B, and S_ be the anti-involutions of R ,. induced

by the identity transformation and reflection of R***', respec-
tively. These maps allow us to construct operators

(2.3)

D* W (2.4)
in the following way.
First, V¥, we define
D*)=w, B, (W) =fo, B.(u) (2.5)
D-(Y)=w_B_(Y)=fo_B_(u).
Similarly we can define operators D* : ¥
D) =B, =B, (2.6)
D) =B_(P_ =B_(uo_f.

The elements @ , have to be taken in such a way that

0, By (g =f 2.7)
Suchelementsw , €R,, always exist although the property
{2.7) does not determine them uniquely.

We also introduce the T operators by

T*W)=D o' =0, B. (o}
=fo, B o3 (2.8)
T )=D W '=o_B_ (Yo '=fo_B_(uo_
and similarly
I =oi'B.o, =03 B, / 29)

—=0'B_o_=0""B_(uw_f.
We can check that
T+T+W) =1, D*D* (=€,
(2.10)
DD~ =e_¢,

whereas
r-T-(=¢,
with €, given by
Brlwy)=€, 07" (2.11)
Let us recall that R ¢+ = D;, is a real Clifford algebra

which is realized by the algebra of 2" X 2" complex matrices.
The complex nature of R, is introduced by the product

€€ 1€2€ (2.12)

s+ 19
which plays the role of the pure imaginary unit . [Here, ¢, is
determined by an additional dimension to our starting vec-
tor space R’ (see Ref. 9)].

Thus we always have that either B+(1) or B_(i) is equal
to —iand B, (/)= — B_(i). Hence

T-T*W) =96 ' B_.()CS, (2.13)
with

€ =B_wo_; B_,=B_°B, (2.14)
and

DD () =y*B_ ., (u,)%f. (2.15)
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Similarly, we obtain that

T*T-()=y¢*B~' B, _(u)Bf (2.16)
and

D*D=(h) =y B, _(u,)Bf,
with

B=f,w Jo.; Bi_=B.°B_. (2.17)

Because we can easily check that 8, _(u;) = B_  (1,)as well
as ¥ = + B, we obtain that

r-r+=T+T". (2.18)
Now we can introduce the operations +, 7, and *. How-

ever, the definitions of these operations will depend on the
sign € in the formula

B_)) =€, (2.19)

i.e., will depend on the dimension n =s + ¢ of our vector
space-time R*'. We shall define

Yr=T*Y), ¥"=T@) ¢*=T*T- () (2.20)
when e = + 1, and
Yr=T"() ¢YT=T*W), =TT @, @21
whene= — 1.
We see that in the general case we can write
Pr=TW, ¥ =T W),
and
P=TT W)=T"TW) (2.22)

where € is given by (2.19). This is a generalization of some
operations introduced by Budinich.!® We can easily check
that e= +1 for n=2mod 4, whereas e= —1 for
n=0mod 4.

However, any element ye¥(s,t) =R, , f C R,,. has
its matrix representation as -well as any element
e (s,t)=fR,, CR,, hasone.Besides,inthematrixalge-
bra R, , =C(2") we have very well-defined operations of the
Hermitian conjugation, transposition, and complex conju-
gation. Thus it is quite natural that we want to represent the
spinors ¥+, ¥, and ¢¥* given by (2.20) or (2.21) by the Her-
mitian conjugated, transposed, and complex conjugated to ¢
matrices, respectively. But this requirement puts some con-
ditions on w , additional to (2.7).

To see that we can always fix such elementsw , andw _
let us do this for lower-dimensional space-times R** and
then use the isomorphism'’

Ry ok =Ry, @ (R PE. (2.23)

Let us take, for example, the vector space R2°, i.e.,
€= + 1. Then for f=}(1 +¢,); p, =/, p,=e,f we can
takew, = 1, _ = e,,. Now, any spinor ¢*, ¢7, and ¢* is
represented by the matrix approximately related to the ma-
trix which represents spinor ¢. Let us take the vector space
R*! ie., €= — 1. Let us fix the Dirac spinor space ¥(3,1)
by taking as an element f

F=41+e)l +ey).

Here,e? =e2 =e2 = 1= —él.

Now, for (py, P2, p3, pa) =/, €21, €3 f, €3, f) elements
@, = e;;; and w_ = je, will satisfy our requirements.
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Thus, in the further considerations we shall assume that
elements w , and @ _ not only fulfill the condition (2.7) but
also allow us to represent elements ¢, 7, and ¥* given by
(2.20} and (2.21) by Hermitian conjugated, transposed, or
complex conjugated to ¥ matrices, respectively.

From (2.18) we have that

Y= =" (2.24)
Thus we see that the operations + , 7, *, which we use in the
quantum theories, can be expressed in the language of the
Clifford algebra approach by (2.20) or (2.21), depending on
the goemetrical property of the pure imaginary unit
eqe €, = i. Using above operators we also can define the
scalar products of spinors. Namely, for any ¢, ge¥(s,t),
¥ = uf, ¢ = uf we put

o)y =D* W =T Yo, g=/fo, B, upf

(2.25)
Let us define ¥ as given by
v=v 0, =T (Y. = D) (2.26)
Now we can write
W) = do. (2.27)
The map
Y9, (2.28)

given by (2.26) corresponds to the operation of bar conjuga-
tion well known in quantum theories. For example, for
n = 4,(s,t) = (3,1), and for the Dirac spinor space and its base
introduced above we have

P=T " Wo_ =it ty,= 10" Vo (2.29)

Let f have the form given by (1.3). Similarly, as pre-
viously, we shall denote it by /. Let ¥ denote the Dirac
spinor space determined by f ', i.e., ¥' = R, ,. f*. Similarly,
let { f*, @ = 1.2} denote the family of mutually orthogo-
nal primitive idempotents introduced by {1.4), and let { V=,
a = 1..2¥ } be the set of Dirac spinor spaces corresponding

to {f°}.

We introduce the maps

Ye: PIXW'SR,, (3.1)
in the following way: for any ¢, ge¥ !,

Y:Wp)=vo, B, (@) (3.2)

First of all, it is easy to see that the image of y . (y_) is
given as a left and a right ideal of R, ,. simultaneously. It
means that the map y, (v_) has to be onto the Dirac—Clif-
ford algebra D,, = R, .. Because B,(i) = + i for some &
equal to + 1 or — 1 we obtain from (3.2} that

Xs WAy, up) =Auysd.e) (3.3)
and

X -sAx, pp)=Apu*y _s(p) (3.4)
for any 4, ueC.

Hence we can introduce on the set ¥ ! X ¥ ! the follow-
ing relations of equivalence:

Rs: (A, up)~App), (3.5)
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W+ Y@ )~ e o) + (W), (3.5
(@1 + @)~ (@) + (1,), (3.5")

and
R_s: (A, pp)~Au*the), (3.6)

with the rest of the identifications equal to (3.5') and (3.5").
Now it is obvious that the following lemma is true.
Lemma I: The maps y , are bijections between the sets

Wix¥!YYR, and R,,. (3.7)

Let us notice that .
VIXWI/Rs =PV (3.8)
Now let { p;},i = 1.--2" be the basis of ¥ of the form given

by (2.1), ie, p;, =u, f'. It is easy to see that for any
a€(l, ...,2%) and for any /€1, ..., 2"),

fouy=uf?, (3.9)
with 8 depending on (i,a), i.e., 8 = B{i,a).

Lemma 2: Let us fix some A€(1.-2"). Then the set of
elements y . (p;01), i = 1---2" forms the basis of some ap-
propriate Dirac spinor space ¥# =R, ,. f%.

Proof:

X lpopa)=wflo, B (B, (ua)
= ‘Sulwi B;t (f‘Wi (“A)
=buw, u, f*,
where 8,6 * = + 1,and 8 depends on the sign of the map y
andond [B, (f)=f %, witha=a(1)}
It is easy to see that for any Dirac—Clifford algebra D, ,
we have

r+l——y _
2 ¥=12

(3.10)

ie,r=y.

Now, because y, are bijections and because
VAP = for B, #P,, we obtain immediately that

X+ (I pa, NP X P1,}) =0, ford,#A,
Again by Lemma 1 we obtain that y, (p;,ps1)i=1,..., 2
has to form a base of ¥7.

The above consideration can be very easily generalized
to the following statement.

Theorem 1: For any ¢, pc¥'! theimage y ., (¥,) [as well
as y _(¢,@)] belongs to some minimal left ideal of the Clifford
algebra R, ,.. And conversely let WeR,, ,. be an element of
some minimal leftideal of R, ,.. Then thereexist spinors ¢, ,
@,c¥'suchthat W=y, (¢,,p,)

Proof: the first part is simple. For the second, let W
belong to some minimal left ideal R, ,. &, where 4 is a primi-
tive idempotent, i.e.,

W =ph, with peR,,..
But

h=h" f*=,
and for any /¢ we can find invertible elements v°, such that
vifT=B, (W%

Taking into account the fact that for any ¥ = uf’,
p=uf'e¥’,

X:Wp)=06uw, By (fB, W), withé= +1,
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we obtain immediately the second assertion. ]

The above theorem provides us with a simple criterion
which tells us which elements of a given Clifford algebra
R, . belong to some minimal left ideals.

Iv.
By construction, we have that
R* CR* ® Rey = R*"

D

A (4.1)
Thus, the vector space R*’ can be obtained as the image of
the maps y , of some elements belonging to ¥ ' X ¥'. Let
seSpin(s,t }C Spin{s’,¢ ). Of course s belongs to the automor-

phism group of the spinor space ¥ . We can easily check that

X 6sp)=sy, Wk~ Vipe¥' (4.2)
Thus, to any transformation seSpin(s,f ) of the Dirac spinor
space ¥' we can associate a unique transformation
g = 7(5)eS0(s,t ) of our starting vector space R*'. [Here 7 is
the covering map 7: Spin(s,? }>SOis,z ).]

Let {ey,...,¢, ., .) be an orthogonal base of R*. Let g be
some orthogonal transformation of R**. We can understand
this transformation as the result of the transformation

+ seSpin(s,t ) of the spinor space ¥, such that 7{ + 5) = g.
However, there also exists another, completely unequivalent
interpretation of the transformation g of the vector space
R*'. Tt is related with the decomposition of R, ,. onto its
minimal left ideals according to (1.5), i.e.,

=Ry,

N
R,, =eo0W"

asl

(4.3)

This approach allows us to treat the vector space R*' as the
vector space spanned by elements {e, } which are composi-
tions of spinors belonging to different concrete spinor spaces
¥ “. More precisely, let y,,: 4 = 1,...,5 + t be the matrix rep-

resentation of ¢, in the Dirac—Clifford algebra D_,. Then we -

can write that

e, =u, + ¥, + -+, (4.4)
or in the matrix representation
Vu =Y + ¥+ + U (4.4)

Here ;€% and any spinor ¢ has to be unequal to zero.
Let { p7}, i = 1,...,N, be the base of ¥*. Then

'/’Z =E¢ZIP?’

i/l

(4.5)

and the coefficient matrix 4 ¥ = ||¢5, || is exactly equal to
our nonsingular matrix y,,. Let

ge,—e,, (4.6)
ie.,

&YYo {4.6')
and let seSpin(s,t) be such that 7(s) =g. Let y5(¥ L{pi})
=YP withB=B(5,4).

In a general case we have that

Xsls¥ L, {50} )£ P, (4.7)
Thus we can say that the transformation g breaks the decom-
position {4.3) of R, ,.. We can see this also in another way.
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Namely, any seSpin(s,? ) determines the following maps:

(a) s:Ry, —R,,, {4.8)
given by

u->su, VueR,,., (4.8')
and
(b) S:Rs',t' '””Rs’,t' ’ (4«9)
given by

u—sus~'gou, VueR,, . 4.9)

The former map is related with the action of s on the
spinor spaces ¥* and of course preserves the decomposition
{4.3), whereas the latter is related with the bijections

Ys: W' X¥/Rs>R, .,
and obviously does not preserve the decomposition {4.3).
However, if we fix some matrix realization of R, ,. then
itis equivalent to the fact that we fix some concrete primitive

idempotent f = ' as well as a related decomposition (4.3). By
{4.3), (4.4'), {4.6), and {4.6") we see that

Vo=l ¥+ O

and

=g, V.=1,..5+1 Va=1..,N, (410
whereg,,, is the matrix element of the transformation g (4.6),
le,e, =g,.e,.

Thus we can look at the map g as preserving the decom-
position (4.3), but transforming spinors which build the basis
of R*" according to (4.4).

The relation {4.10) tells us that we cannot relate with g
any transformation of the spinor space ¥*. The formula
{4.10) only means that the subspace of ¥ spanned by
{¥5 ), = 1,5+ . is transformed onto itself. Let us notice that
the set of spinors {#7 | can be linearly dependent. Then, ac-
cording to (4.10) g transforms the same element ¢; = ¥},
u#v, of ¥ in different ways. We can summarize this in the
following diagram:

XS
Ks(W'XWY/R;) — Ky(W'X¥W'/R,)

g=rls)

Rs,t — Rs,t

¢ \;
(0] oiem [302]
Here K;(¥ ' X ¥ '/R ) denotes the coimage of R** of the bi-

Jection ys, the map & is uniquely determined by (4.4) and
(4.4'), and « by (4.10). By (4.2) the upper diagram commutes.
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The converse problem of similarity analysis is discussed for the infinitesimal symmetry
transformations of ordinary second-order differential equations which are nonlinear in x (and
may be linear or nonlinear in x). A natural classification of the problem arises, according to the
highest order NV of nonlinearity in x. The completely general maximal Lie algebra is obtained for
the case N<3. In the case N>4 one has, besides the system of differential equations for the
infinitesimal generators, an extra set of anholonomic constraints, which operates as a symmetry-

breaking mechanism producing a strong reduction in the number of surviving parameters.
Miscellaneous examples are given, which illustrate some features of similarity analysis of
nonlinear systems. The infinitesimal point transformation symmetries of the Van der Pol

oscillator are also briefly discussed.

I. INTRODUCTION

In a previous paper' we have obtained the completely
general Lie algebra associated with the point symmetry
transformations of a given inhomogeneous ordinary linear
differential equation of the second order. Here we present a
generalization of our previous work. Indeed, using the same
mathematical approach introduced in paper 1, in this article
we tackle the converse problem of similarity analysis? for the
infinitesimal symmetry groups of some nonlinear ordinary
second-order differential equations which are relevant in
mechanics. As we shall see, it turns out that our previous
results (for linear systems) correspond to special cases of the
similarity Lie algebras we present in this work.

Since the motivation underlying this article is the same
already formulated in paper I, we would like to refer the
reader to the Introduction of that paper. It should be men-
tioned, however, that the issue discussed in this paper bears a
particular interest from the standpoint of contemporary
classical mechanics. Recently, a large amount of research
has been related to nonlinear systems having a single degree
of freedom,* or multidegrees of freedom.* Although in this
paper we do not touch on the physical aspects of nonlinear
systems (and, moreover, we do only enface a very restricted

. area of the enormous field of nonlinear analysis), we wish to
remark that similarity methods may be called to play an
interesting role in nonlinear mechanics. For instance, in a
recent article’ the complete nonlinear problem of water
waves is investigated, according to the perfect-fluid model,
using general methods of infinitesimal transformation the-
ory® for finding the symmetry groups of free-boundary prob-
lems.

It appears, therefore, to be an attractive endeavor to
obtain the Lie algebras associated with the point transforma-
tion invariance of a nonlinear system having a single degree
of freedom.”

The organization of this paper is as follows. In Sec. II
we present a general discussion of the infinitesimal symme-
tries of an ordinary differential equation of the second order,
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which is nonlinear in x. Thus, a natural classification of the
problem arises, according as the highest order & of nonlin-
earity in x is N<3 or N>4. We examine these two cases in
Secs. III and IV, respectively. Then we briefly present some
miscellaneous examples (Sec. V) of the previous formalism
for the converse problem of infinitesimal similarity analysis
is nonlinear mechanics. Given its importance, in Sec. V we
also discuss the point transformation symmetries of the Van
der Pol oscillator, as an example of a differential equation
which is linear in X and nonlinear in x.

IL INFINITESIMAL SYMMETRIES OF A SECOND-ORDER
NONLINEAR DIFFERENTIAL EQUATION: GENERAL
DISCUSSION

Let us briefly analyze the symmetries of an ordinary
second-order nonlinear differential equation

x = fy(tx%), (2.1)

in the neighborhood of the identity. We recall that if the
infinitesimal point transformation

t'=t+ en(tx),
x'=x+ €6 (tx)

(2.2a)
(2.2b)

(with 0<e<1) corresponds to a symmetry of Eq. (2.1), then
the generating functions #(¢,x) and 8 (¢,x) satisfy the well-
known identity

ett + (zgxt - 771:)5‘ + (exx - ant)x.2 - 77xxx3

+ (6. — 27,) — 3. XYy (tx%)

- qu,(t,x,J'c) - efo (t’x’x)

+ (6, + (6 — )X — 7, Wy, (6,x,%)=0 (2.3)
[cf. Eq. (I.2.5)]. Thus, it is evident that the power series of
Sw(t.x,%) in terms of x shall give us a set of differential equa-
tions (and possible subsidiary anholonomic constraints) for
the generators. Furthermore, it is also clear that a Laurent

series in x for fy(t,xx) would entail a dynamical extrava-
gance. Hence, for the purposes of nonlinear mechanics, it is
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general enough to assume a positive power series in X; i.e.,
e N
x=3 a.(tx)x*, N=0,12,.., (2.4)
k=0

which covers, once and for all, the (linear and nonlinear)
cases of mechanical interest. Usually, in the applications,
JSwltx,x)is a polynomial in x; not so in relativistic mechanics,
however.

Now, if we substitute from Eq. (2.4) into the identity
(2.3), after separating the null coeflicients of the different
powers of x, we get:

Mo = — O, +afn, — 20x) —aym —a,0—4a0, (2.5)

Orx — 20y — 217, = @30, + a3, + @5, 0 + 3a36,, (2.6)
20, — = 3agn, —aym, —ay, — a0 =2a,6,, (2.7)
0, —ay2y, —6,)—ay,n —a,,0—a,6, =0; (2.8)
and also

(k+ Nax, 6, =k —4a,_ 1, —apn—aib
+al—2m, — k= 16,), (29)

which holds for k = 4,5,...,N — 1;and moreover, if N is finite
(N>4):

(N —2)p, — (N—1)0,)ay —nay, —bay,
+ (N —4m,ay_, =0,

(N — 3)ayy, =O. (2.11)

This brings into the fore a natural classification of the prob-
lem in three cases: (A) 0<N<3, (B) 4<N < 0, and (C)
N=c.

In Eqgs. (2.5)-(2.8) one has a set of four linear homo-
geneous differential equations of the second order of the two
unknown generating functions (7,8 ) in two independent var-
iables (t,x). [These equations are the direct generalization of
Egs. (1.2.7)-{1.2.10) to the nonlinear case in x.] In Egs. (2.9),
(2.10), and (2.11) one has a set of linear homogeneous and
anholonomic constraints, of the first order, for (7,8 ), which
must be satisfied in case B. Clearly, case A has no con-
straints; while, in case C, Eq. (2.9) holds for £ = 4,5,..., and
Eqgs. (2.10) and (2.11) become meaningless.

Therefore, in handling the infinitesimal symmetries of a
system which is nonlinear in x (and which may be linear or
nonlinear in x) we may operate on a linear basis of indepen-
dent solutions of Egs. (2.5)-(2.8), according to the same ap-
proach used in paper 1.® Indeed, given a,(tx), for
k =0,1,2,3,4, in Eq. (2.4), Egs. (2.5)—2.8) can be solved for
77(¢,x) and 6 (¢,x) (at least, in principle). The general solution of
this linear homogeneous system can be formally written as a
superposition of linearly independent solutions and contains
at most eight constants of integration® [as a glance at Egs.
(2.5)—(2.8) neatly shows]. Therefore, according to the princi-
ple of superposition, these integration constants appear as
the arbitrary numerical coefficients of the linear combina-
tion adopted as general solution for 7(f,x) and 8 (¢,x) [cf., Egs.
(3.6)and (3.7), below]. Clearly, this fact motivates that the set
of required initial data for solving Eqgs. (2.5)—(2.8) is {at most)
eight-dimensional [cf. Egs. (3.12), infra].

In case A these constants of integration can be con-
sidered as essential parameters of the Lie group which de-

(2.10)
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scribes the invariance of the differential equation. In cases B
and C, however, the subsidiary constraints [Eqgs. (2.9)-2.11}]
may produce a strong reduction in the number of allowable
nonzeroth constants of integration which can be used as es-
sential parameters of the symmetry group. Thus, if the po-
lynomial series in x is “long enough” one arrives almost cer-
tainly at the trivial solution,

7(tx)=6(tx) =0, (2.12)

unless the coefficients a, (,x) meet very “fortunate” condi-
tions. [Of course, this issue is just a matter of principle. In
practice, when N>4, one takes advantage of the simplifica-
tion introduced by Egs. (2.9)}~2.11), and one solves these
equations before tackling Eqgs. (2.5)-2.8).]

Hence, the conclusion follows that differential equa-
tions of order higher than one only exceptionally admit con-
tinuous groups of point symmetry transformations. (This is
in contrast with the well-known general result concerning
first-order differential equations.'’) In particular, if a sec-
ond-order differential equation admits a continuous symme-
try group generated by (2.2), one concludes that these infini-
tesimal symmetry transformations correspond to a Lie
group having no more than eight essential parameters.®

It is not out of place to illustrate the facts we present
with an example. Hence, in Sec. V we present a compared
similarity analysis of two nonlinear differential equations, in
order to exhibit some peculiar relations between symmetry
and nonlinearity.

We wish to end this section with a brief remark con-
cerning the “conditions” under which the method presently
discussed in this paper (as well as in paper I) is meaningful for
obtaining the Lie algebra associated with an ordinary sec-
ond-order differential equation. We first plainly observe that
71 = 6 =0 is always a (trivial) solution of Eq. (2.3) {or, for
that matter, of Eqgs. (2.5}(2.8) and Egs. (2.9)~2.11)]. Fur-
thermore, there are ordinary differential equations of the
second order such that they admit the trivial solution (2.12)
as the only solution of Eq. {2.3). [To recall an extreme {and
well known) example of this fact, the equation x = x> + ¢ 2
gives n = 6 = 0 as the only solution of Eq. (2.3).] Clearly, in
such cases, the only point symmetry admitted by the differ-
ential equation is the identity. Simple as it is, this fact is
telling us that our approach to the Lie algebra of a differen-
tial equation of the second order is completely general, since
it stems from the converse problem of infinitesimal similar-
ity analysis. In other words, in order to use the proposed
method it is not necessary to assume (a priori) that the differ-
ential equation admits certain one-parameter symmetries
that belong to a finite dimensional Lie algebra; whether it
does or not, is an outcoming (i.e., @ posteriori) result of the
similarity analysis itself.

Ill. LIE ALGEBRAS OF x = f, (1 x,%): CASE N<3

According to our previous remarks, we consider first
the infinitesimal symmetry problem set by a differential
equation of the following form:

X = aglt,x) + ay{txpE + aptx P + astxp®,  (3.1)
where some of the &’s may be constant and eventually zero.
Therefore, Egs. (2.5)—(2.8) become in the following system:
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Nex + @M + @320, — 7,) + @37 + 3,6 =0, (3.2) [Xa(ex).X, (1x)] =S X, 1X), (3.9)
O, -2, —20m, —af, —a,n—a,,0—3a6,=0, where f<, denotes the structure constants. Thus, we observe
(3.3} thatthe full symmetry group of the differential equation (3.1}

i ing i iti . . (1.2.2
20, — 1, — 3agn, —am, — T — a0 — 2,0, =0, (3.4) g);n;ail)l]y admits the following identities [cf. Egs. ( 0} and

with no constraints at all. As we have already remarked in :bm (72701 % [6a 75 1. (3.10)
Sec. II, the general solution of this homogeneous linear sys- a80c = [12:05: ] + [6a:65x ]- (3.11)
tem can be formally written as a superposition of linearly ~ Of course, these commutation relations are particularly
independent basis solutions #,(x) and 4,(tx), critical in the sense that they hold only for those ranges of ¢
a = 1,2,...,r<8; thus, using Einstein’s “dummy index” con-  and x on which the given functions a, (t,x).k =0,1,2,3, are
vention, we write regular.!! Hence, let us assume “initial data” at some regular
point (£,x) = (t;,x,) (say) to evaluate the structure constants.

9,, — (27, — ex) — QN — o, 0 — a6, =0, (35)

ex) = ¢°4(tx), (3.6) So, in order to represent the algebra, we introduce the fol-
8(t,%) = ¢°6, (£,%). (3.7) lowmgl p_arametrlzatlon:2 ,
Henceforth we assume 7 = 8 and follow the same method 9 = 7loo) q4 = 0 to%o),
introduced in paper I in order to obtain the structure con- ¢ =nltoXoh ¢ =0Ox(toxo: (3.12)
stants, without recourse to the detailed knowledge of the @ =1,(teXo)  4° = 6,{torxo), ’
basis functions 7, {£,x) and 6, (¢,x). Since the calculations are g =,(toXe)  ¢° =10, (toxo);

much more involved in the present case, we shall state them
in a sketchy manner, for the sake of brevity.
It is well known that, because of the Lie—Cartan inte-

and thus, according to Eqgs. (3.6) and (3.7), we adopt the fol-
lowing set of “initial data”:

grability conditions, the formal infinitesimal operators NalloXo) =81, GaltoXo) = 8aps

X,(tx) = 7,(tx)3, + 6,(tx)9;, (3.8) NalloXo) =8u3,  OuxltoXo) = Bass 3.13)
subject to the Killing equations (3.2}-{3.5), satisfy a Lie alge- NaxlloXo) = 8, OacltorXo) = g, '
bra DanlforXo) = 26475 Opxx(torXo) = 28,5

As we shall see presently, these nonsingular “initial data” uniquely determine the general form of the structure constants {up
to equivalence). However, as we have already remarked in paper 1, the main point in this matter is that, if we use a different set
of “initial conditions,” defined at the same or at a different regular point, we obtain a different parametrization of the group,
which corresponds to a mere change of the basis of the algebra.

In this manner, Eqs. (3.10) and (3.11) give us immediately the following subsets of structure constants:

S = [6a1:053] + [6a2:0ss ], (3.14)
= [8a1:056] + [022:054 1, {3.15)

of which the meaning is clear. Of course, in order to obtain the structure constants £, /4, /5, and £, , we have to take the de-
rivatives [, oo o5 Oox of b Mex» and 5, 8., respectively, in Eqs. {3.10) and (3.11), use the fact that 9, and 6, {a = 1,2,...,8)
satisfy Eqs. (3.2)~(3.5), and evaluate these derivatives at (¢,x) = (fo,%,). Thus we get

fon = [5.:1»5&2'61;2 +26b7] - [&:z&az‘su +a,8,5 +sasab6 _‘sbB] — [8ass0s6 15 (3.16)
foo= [0 é&u‘sbz + 18,855 + iao‘sbs + @86 + ‘Sb?] +2[8424055 ] + [8as:056 ] (3.17)
f:b = [5a1 :(63: - iazx)‘sbz - ﬁz‘su - alabS - 3835116 + 51:3]

+ [822:83(853 — 2854) — @aBps ] — [8u3s05 ] + [BaasBas ] (3.18)
fop = [8ar {Box — 421852 + 28853 — AoBys + al‘Sbs]

+ [5a2’§an5b3 + iaoabs + 82856 +5b7] + [043:056 ] — [02as0s6 ] (3.19)

where @ denotes a(t,,x,), quite generally. By the same token, to calculate 7, and /%, we need the derivatives /<, 7., and

[y 0., respectively, in Egs. (3.10) and (3.11); then we perform various substitutions in the right-hand members thereof, and
evaluate them at (£,,x,). So we obtain, finally,

fis = [8ars — UBo8o, — 8s,) — 10:(@1 — 4820) + B0 — @s8or — Boxx + Y2810 — @)}z
— (288, — 48} — 280, + @1,)By3 + §AeA:8ps + A1y s + Y@y — Byr — §B3)0h6 — @Bss |
— [6e2,{386%; — @1 — @2)}6,5 — 4(@182 + ¥@1x — @2r)} s
+ Y@, — 8} — 28y + @1,)8ps + (483,85 — @ + 283, }856 + §2:855 | + [843:8B55 + 7]
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+ [8aa — 13y +§azab6] +42,[85:656 ] + [Bus:Dss B

(3.20)

fos = [Bars{ — @osx + @185, + 48,081, — Bsr) — §85(@0x — 481,) + Y@1ae — 2800x) + s )6,
+ {§8,@; + 4@, —12,)}6,5 + [ — 060 + @1, — 48,0850 + [ — @@, + ao, —48,,16,
A — Byl + B + 8y — 283, )8y + 10,857 | + [02:dB1Bs8s + | — 28,8, + 452 + By, — 284,16,4
+ 3 = 38 + @y — 8, )85 + @@y + §83857 ] + [0as» — 481855 +4036,6 ]

+ [Basr — @3By +655] + [5‘:5&&251;6 +68,7]-

We present the results of these calculations in Table I,
wherefrom the rather formidable Lie algebra follows for the
yet unknown infinitesimal operators X, (¢,x). Clearly, we re-
cover from Table I the Lie algebra for the linear system
X + f,(t)x + f,(t)x = f,(t) considered in paper I (cf. Tables I
and II of that paper).

It must be borne in mind that the general algebra,
whose structure constants have been obtained above, corre-
sponds to the maximal possible Lie algebra (i.e., r = 8) asso-
ciated with a differential equation of the form presented in
Eq. (3.1). Indeed, it may happen that the fundamental system
of Egs. (3.2)—3.5) admits less than eight linearly independent
solutions (7 < 8}, in which case some of the ¢’s are zero. For
instance, one may get after solving Egs. (3.2){3.5), in a parti-
cular case: 7 = #(t )and 6 = 6 (x); which means, according to
the parametrization adopted in Egs. (3.12): ¢° = ¢° = 0. But
then one may use the same rule (ie,
¢ = ¢° = 0=X, = X, = 0) one uses for having the subalge-
bras associated with the subgroups one obtains by the elimi-
nation of some of the parameters. Of course, in such a case
one must substitute the new structure constants

(3.21)

I

L =rt =13, =f%, = Oeverywhere in Table I It is only
in this very special sense that all the Lie algebras associated
with Eq. (3.1) are contained in Table 1. The situation we
comment presents itself very frequently for nonlinear differ-
ential equations. We have already recalled the extreme ex-
ample of the equation x = x? + ¢ 2, which belongs in the class
of Eq. (3.1), and which, however, gives 7 = § = O as the only
solution of Egs. (3.2)3.5).

IV. LIE ALGEBRAS OF x = 7, (tx,X): CASE N>4

Now let us briefly consider the infinitesimal symmetries
of a differential equation of the following type:

X = aoftx) + - + @t X + - +aytx®,  (4.1)
where a,, #£0 for some N = 4,5,... < oo. In this case one has
the holonomic constraint 7 = () [cf. Eq. (2.11)] and, there-

fore, taking into account this constraint, the generators have
to satisfy the following system of differential equations:

26;:: - 7] - al'i? — N — alxg - 2“281 =0,
9,, - 00(21'7 - 9x) = Qo7 — an‘9 - alat =0,

TABLE I. The nonzeroth structure constants of the maximal Lie algebra associated with the differential equation X = ag(t,x) + a,(tx)x

+ ay(txX)%* + a,(t,x)%%; here @ denotes aftyx,) quite generally.

f;3=1, ;5:1.

f?!;:l, fga_—'l'

f?z=iazn f?7=21 f§4= —iazy f35=—&1,
f;6=“ia:v f;szln fge=—l~

ftz =Q&;,. f':s =i&1, f:s =§ao,

?6=621 f417=1» f;s=2; f§6=1.
ﬁz=&31"£&2,, f§4=_§azs f?sz'ap
ﬁ6="%&\3t f?le’ f§3=a3r f;-l:"‘za;;;
f;5= ——'a}, f§s= -1, f:s=1~

”2=80x_ialn f?3=zao, f?4= ‘“ao; f?6=al! f§3 =;&,,
fis =12, fo =8y fo=1 fls=1 fis=—-1L

~
Ta = — 1Bolils, ~— By,) +184(@,, — 180} — Bl + oo, + Ooee — 4281 — Tads

ﬂ: = —26062 +ia§ + zaﬂx —3,,, f;’4 :ﬁaoazs f?s =aoats

f-;ﬁ = i(a\u - az: - gaoa\B)r fzs = - %ao’ f;3 = - iaoaS + ‘}Galx - az:);

f; =ialaz +%(&lx "‘an)r f;s = - i(aoaz _ai - Zao;: + alr)’
A
fie = '16163"‘621 —233,, f;s = "iap f;5 =8y fi=1,

f15="§ao’ fzo=iazr f;s=iav fgs“L

F = = Bgls, + 848y, + 48, — 8y,) ~ 18580, — 185} + Y8 1ax — 2830) + Tasry

h= iasaz + i@y, —48s) flu=— iaoas +4@,, — @),

fh = —§8d8, + 8o, — 81y [l =H— @8+ 35 + e — 285} fi =2

£ =18,8, fi = —288,+ 48] + 8y, — 2s,,
S35 = - iaoaa + By, — 8oy f36 =0plty [ = ias, Sfis= — a,
i =1d, fi= -Gy fa=1 =18, fH=1
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as well as the following set of anholonomic constraints:
(k+ Nay 16, + (k— 1)a b, + ;.6

— (k = 2)ai ] + e — 81205 =0, (4-4)
for 2<k<(N — 1) (i.e.,, when N = 4,5,... < o), and
(N — Nayb, +ay, 0 — (N—2)ayn +ayn =0, (4.5)

for N =4,5,... < . Let us introduce the same parametriza-
tion adopted before [cf. Egs. (3.12)]. Obviously, now we have
g =7,.(t = t,) = 0 (i.e., X5 = 0), and thus the Lie group has
seven parameters at most. As a matter of principle, Egs. (4.2)
and (4.3) can be solved, to yield:

7t) = g7.(t),
(4.6)

6 (tx) = q°0,(tx),
where, clearly, 75 = 65 = 0. But then, if we substitute from
Eqgs. (4.6) into Eqgs. (4.4) and (4.5), and evaluate them at
(t.x) = (tg,x,), we get a set of N — 1 linear homogeneous rela-
tions (for the following six constants of integration:
a9’ 44" ¢° and ¢°); ie.,
(k+ 1)@ 16° + (k — 1)21q* + Binq”

— (k= 2)ag’ + 8ugq' — 26124 =0, (4.7)

(N—1)ayg* + @y, ¢ — (N—2)@yg + Qng' =0,

(4.8)
with 2<kA<N — 1 and N>4. Thus, in any given instance, the
rank of the matrix [six columns X (N — 1) rows] which fig-
ures in this linear scheme shall give us the number of essen-
tial parameters of the maximal Lie group associated with
Eq. (4.1). Again, the symmetry-breaking mechanism afford-
ed by the anholonomic constraints becomes apparent.

Of course, in any attempt at a general discussion of the
generators (4.6) the mathematics becomes bewildering. It is
interesting, however, to consider at least the most simple
case when all the coefficients a;, j = 1,2,...,N, in Eq. (4.1) are
constants. We discuss this example in the next Section (Sec.
V, Example 5b). Nevertheless, it must be understood that the
almost unsurmountable difficulties one faces for having a
general formal discussion of the issue when the a;’s are not
constants (and N>4) does not mean that the method fails in
thése instances.

As for the case when N = oo, the severe restrictions
imposed by the first-order constraints become even stronger.
Notwithstanding this fact, this does not mean that one
should expect the identity to be the only allowable symmetry
of a differential equation of the form

= 3 anleuit (4.9)

in every instance. In the next section we also present an ex-
ample of the method (Example 5d} for this extreme case.

V. SOME MISCELLANEOQUS EXAMPLES

In this section we present some instances, which serve
to illustrate some particular points of the previous method
for obtaining the Lie algebra associated with the point sym-
metries of one-dimensional systems with a nonlinear behav-
iorin x. The examples appended in this section also illustrate
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some interesting features of the converse problem of similar-
ity analysis for nonlinear systems. For the sake of brevity,
our discussion is very sketchy.

We shall consider the infinitesimal symmetry proper-
ties of the following systems in one dimension: (a) compared
similarity analysis of two nonlinear differential equations
(with N = 3 and N = 5); (b) nonlinear differential equation,
with constant coefficients and N 4; (c) the Van der Pol oscil-
lator; and (d) relativistic uniformly accelerated motion (i.e.,
N= ).

Example 5a: Here we present a compared similarity
analysis of two nonlinear differential equations [i.e., Eq. (5.1)
versus Eq. (5.6) below], in order to exhibit some peculiar rela-
tions between symmetry and nonlinearity. Thus, let us con-
sider the differential equation

X = a,i’, (5.1)
where a, is a constant. In this case Egs. (2.6)-(2.8) become

6,=0,

20,, — 9, =0,

8. —21,, =3a,0,, 5.2)

Nex = A3(7, — 26,),

which we integrate immediately. Using the parametrization
shown in Egs. (3.12) with (#,,x,) = (0,0), we obtain

Nex)=q' + @t +ex + gt + (¢° - Jag®tx
+ jo3(q® — 29°° — Jas(g® + Jasg®® — Jaig’x?,
(3.3)

6(tx) = ¢* + g*x + g% + ¢°x* + g'tx + Jas¢'X%, (5.4)
and therefore the infinitesimal operators come out as fol-
lows:

X, =4, X,=3d,, X;=I(+lax?)d,

X, = —ax’d, +xd,, Xs=xd,,

Xs = — Jax(6t + ax?)d, + 19,, {5.5)

X, = (1% — Ja3x*d, + x(t + Jasx?)0,,

X, = x(t — Jax?)d, + x%9,.

The Lie algebra is given in Table II (and, of course, it is a
particular case of the maximal algebra whose nonzeroth
structure constants are given in Table I, as the reader can
easily check).

Had we considered, instead of Eq. (5.1), the (perturbed)
differential equation

x = a5 + atx)i’ (5.6)
(with a; constant), we would equally arrive at Egs. (5.2), and
therefore Eqs. (5.3) and (5.4) would follow after integration.
However, the anholonomic constraints presented in Egs.

(2.9)+2.11) must be taken into account in this case, which
yield the following subsidiary conditions:

as(tx)6, =0,
as(tx)(3n, — 46,) — as,(tx)y — as, (tx)0 =0,  (5.7)
as(t.x)n, =0.

Hence, we obtain
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TABLEIL. The Lie algebra associated with the differential equation x = a,%°,a, = constant. One gets the commutator [X..X, ] at the intersection of the ath

row with the b th column.
X, X, X, X, Xs X, X, X,
X, 0 0 X, 0 0 X, — ja,X, 2X, + X, X,
X, Y 0 a:Xs X, ~ 2a.X; X, —ja:X; Xo + 3a: Xy X, +2X,
X, - X, — aX; 0 0 - X X+ Jas Xy X; 0
X, 0 — X, + 2a,X, 0 0 X, — X, — a, X, 0 X,
X, 0 - X, X, —X, 0 -X,+ X, X, 0
X — X, + aX; da:X, —Xo—~la Xy X+ aXs X, — X, 0 0 X;
X, —2X,— X, —X¢—iaX, - X, 0 —X, 0 0 0
X, - X, — X, — 2X, 0 —X, 0 - X, 0 0
nt)=¢"+ ¢, 0(x)=¢*+i¢g’x, (5.8)  In consequence, if
and, moreover, N(N—k)
. \ Ay o, (5.14)
g'as,(tx) + gas. (6x) + ¢(tas, (1%) (k+ oy
+ xas, (6%) — as(tx) =0, (5.9) for some k in the range 0<k<N — 2, we must set g° = 0; and

which, in general, yields ¢' = ¢° = ¢* = 0, unless the func-
tion a;(t,x) meets very “fortunate” conditions. We present
some of these “fortunate” cases in Table I1I. The only excep-
tional “case” missing in Table III (i.e., as = tas, + xas,
and as, = Aas,) is impossible. Hence we conclude that, in
general, no matter how small is the nonlinear perturbative
term a(t,x)x° in Eq. (5.6), as far as it is not zero, it operates as
a very strong symmetry breakdown mechanism for the un-
perturbed system defined in Eq. (5.1), because of the subsi-
diary constraints which must be satisfied.

Example 5b: Let us consider the (nonlinear in x) differ-
ential equation of the second order, with constant coeffi-
cients,

X=0ag+ -+ ax® + o + ayx®, (5.10)
where ay, #0 for some N = 4,5,... < «. Then Egs. (4.4) (for
k = N — 1) and (4.5) give us, immediately,

i) =¢'+¢1, (5.11)
Ayt 3, , N—2 5
NN —lay  N_11°

which correspond to a chosen parametrization at the regular
point (£,,xo) = (0,0), and which, upon substitution into Eqgs.
(4.2), (4.3), and (4.4) (for 2<k<N — 2) yield

(NN —k)aay — (k+ Da,,an 1) =0,
k=0,1,.,N—2.

8(tx)=¢ (5.12)

(5.13)

TABLE IIl. Exceptional cases for the generators associated with
X = @k + ai{tx)i’,a, = constant.

as(t.x) nit.x) 8(1x)
At gt '
At+C g1 — 4 /c)t) g —44/C)g'x
At +at? 0 ¢
Bx? ¢+t irx
Bx*+C q 0
Bx* + bx* q' 0
At + BxX® Tt irx
At +Bx* 4+ C g'(1 — (4 /C)t) — 4 /C)g'x
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thus the generators are simply

n=q' (time displacement),
(5.15)
0=¢* (space displacement),
as expected. On the other hand, if
N(N-—-k
@, ( oy (5.16)

=

(k+lay_,
holds for all k =0,1,...,N — 2, that is, if (and only if) the
differential equation (5.10) is of the form

- a1\ . N
x=aylx+ =ax +B), (N>4), (5.17)
Nay
the following exceptional case obtains:
) =g¢'+at,
{5.18)

N - 2)x — 3¢

O(tx)=q*+ oV =2 — Bt

tx)=¢" +q¢—7—

Hence, the Lie algebra associated with a second-order differ-
ential equation like (5.17) is

[Xsz] = 0,
(X, X,] =X, — N’i X, (5.19)
[XZ»X3] = x: ?Xz-

Of course (since N>4, ex hypothesis), the reader can easily
check that this algebra does not correspond to a particular
case of the maximal Lie algebra presented in Table I (which
holds only for N<3).

Example 5¢ (the Van der Pol oscillator): There are many
examples of bizarre nonlinear phenomena that can be mo-
deled by a system with a viscous reaction linear in X, al-
though with a variable viscosity which is nonlinear in x, and
under the action of a time independent applied force. Hence,
the equation of motion of such a nonuniform linear viscous
system is of the general form

X = aqfx) + @ (), (5.20)
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which was studied by Levinson and Smith,'? some 40 years
ago. Well known instances of systems that can be represent-
ed by this general type of equation are the onset of coherent
radiation in lasers and masers,'® self-excitations in electric
circuits,'* and many others. Indeed, differential equations of
this general type are fundamental in the dynamic theory
dealing with nonlinear dissipative oscillators.’
From Egs. (3.2)3.5) we obtain, in this case,

Nux =0, (5.21)
6., — 21, — 2a4(xjn, =0, (5.22)
20,, — 1, — 3aglx)y, —ailx)y, —ai(x)f =0, (5.23)
8, — ayx)2y, — 0,) — ajix)p — a,(x)g, =0, (5.24)
as the fundamental equations for the symmetry generators of

Eq. (5.20). For the sake of concreteness, let us consider in
particular the Van der Pol dissipative oscillator,'®

x + wix — p{1 —x*)x =0, (5.25)
¥> 0, which is the canonical instance of the general differen-
tial equation stated in Eq. (5.20). (Here we have a concrete
example of a differential equation which is linear in X and
nonlinear in x.) In this case, Egs. (5.21) and (5.22) can be
easily integrated; after some manipulations, one gets:

N(tx) = Byt 1x + Bolt ), (5.26)
8(t.x) = (§y(t) + ¥yt X* + B5lt 1x
+ @alt) — byt x°, (5.27)

which are analogous (but not equal) to Egs. (I.2.11) and
{1.2.12), respectively. If one substitutes from Eqs. (5.26} and
(5.27) into Egs. (5.23) and (5.24), one obtains that the time
dependent coefficients ¢;(¢ ),/ = 1,2,3,4, have to satisfy:

24, — 6, — v$, =0, (5.28a)
3B, + v,) + 30, + 2yde =0, (5.28b)
Né, + 245) =0, (5.29a)
Y56, + 6y4,) =0 (5.29b)
V¢, =0, (5.29¢)
and
by — Vs + 0345 =0, (5.30a)
s + 20, — v, =0, (5.30b)
1+ (@3 — V), — vl + ¥4 =0, (5.30c)
v$:=0, (5.31a)
N5, + Trd, — Swid) =0, (5.31b)
7’$, =0, (5.31¢)
respectively.
Thus, clearly, the solution is
n=gq', 6=0. (5.32)

Hence, the Van der Pol oscillator has only the (almost trivial)
point symmetry of time translation invariance. We observe
that in the limit of the simple harmonic oscillator (y = 0),
Egs. (5.29) and (5.31) collapse into six useless identities, and
Egs. (5.28) and (5.30) give us the generators presented in Eqgs.
(I.3.10) and (I.3.11) for the linear oscillator. Interesting
enough, notwithstanding the fact that the simple harmonic
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oscillator is a special case of the Van der Pol oscillator, the
symmetry group of point transformations of the nonlinear
oscillator is just a trivial subgroup (ie., ¢'#0, and

¢* = - = ¢° = 0) of the group of the linear oscillator (even in
the limit when y—90, since Eqs. (5.32) do not depend on 7,
indeed).

Furthermore, for the forced Van der Pol oscillator, with
a guiding force fy(t), one has certainly the identity
(7 = @ = 0) as the only surviving symmetry [unless f, =0,
where Egs. (5.32) still hold]. Also, since the Rayleigh oscilla-
tor,"’

X +wix—py1—-x)x=0, (5.33)
can be put in the Van der Pol form by means of the substitu-

tion y = /3x, it is obvious that Egs. (5.32) represent the only
symmetry of this equation too.

In summary, for a Van der Pol oscillator one does not
have an active point transformation (besides time transla-
tion) which transforms one solution into another by means of
a continuous adjustment of a symmetry group parameters.
This makes a great contrast with the simple harmonic oscil-
lator, whose classical states are all continuously connected
by means of its eight-parameter symmetry group of point
transformations. '®

Hence, the nonlinear behavior in x may also determine
a lack of full symmetry in a broken symmetry model, in
which the original symmetry of the unperturbed model can
not be recovered, no matter how small the perturbative cou-
pling constant %0 may be.

Example 5d (hyperbolic motion) ': Finally, for the case
when N = «, we consider uniformly accelerated motion in
relativistic mechanics, for a one-dimensional system. The
definition of uniform acceleration in relativistic mechanics
can be stated as

da” =aa, v,

- (5.34)

where ¢* and v* are the four-acceleration and four-velocity
of the particle, respectively, and 7 denotes proper time (we
set ¢ = 1). It can be shown easily that the equation of motion

¥= —3(1 —x)~ 'xx? (5.35)
is equivalent to Eq. (5.34). (For details, see Rohrlich, Ref. 19,
pp- 115-117.) Clearly, Eq. (5.35) admits the following first
integral:

x =(1 —x?¥'%, (5.36)

where g is a constant. This equation is interesting by itself
since, in one-dimensional space, it corresponds to the follow-
ing relativistic equation of motion

fﬁ“ — )12 =,

which meaning is clear. [In three-dimensional space, how-
ever, the equivalence of (5.36) and (5.37) requires some spe-
cial assumptions on collinearity.] Thus, one may consider
Eq. (5.36) as the differential equation one has to solve for
hyperbolic motion in this case.

If one considers the infinitesimal point symmetries of
Eq. (5.36), as the reader can easily check, one gets

(5.37)
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"=t+eq' (time translation)

(5.38)
x'=x+ €q* (space translation)

as the only infinitesimal point transformation leaving invar-
iant Eq. (5.36).
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Decomposition formulas of exponential operators and Lie exponentials with
some applications to quantum mechanics and statistical physics

Masuo Suzuki

Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
(Received 17 July 1984; accepted for publication 19 October 1984)

Decomposition formulas of general exponential operators in a Banach algebra and in a Lie
algebra are presented that yield a basis of Monte Carlo simulation of quantum systems. They are
applied to study the relaxation and fluctuation from the initially unstable point and to confirm
algebraically the scaling theory of transient phenomena. A global approximation method of
transient phenomena is also formulated on the basis of decomposition formulas. It is applied to

the laser model as a simple example.

I. INTRODUCTION

Exponential operators appear very often in statistical
physics and quantum mechanics. In particular, Feynman’s
formula

i
(é-i-eAMB) =j ell =M B 4 ds, (1.1)
Aw= O 0

has been used very frequently in perturbational calculations.
This has been extended to the following formula’~:

_?;_fi_e«tw_:f el = M) 47(1) 4 ds
0

1
=f A 4 1(1) e MR s, (1.2)
4]

This is furthermore extended to ordered exponentials® in the
succeeding section.

Some generalized decomposition formulas of exponen-
tial operators are derived in Sec. III. One of the simplest
examples is the following formula®:

HeA +B (e(I/n)A e(l/n)B )n”
<({[[4,B }||/2njexp (|4 || + [|B ) (1.3)
This yields Trotter’s formula,®

ﬁm (e{l/n)A e(l/n)B )n
for bounded operators 4 and B. This has been used in per-
forming Monte Carlo simulations of quantum spin systems.’
The above inequality {1.3) is extended to some more general
forms in Sec. IIL

In Sec. IV, we derive some decomposition formulas for
exponential operators® satisfying the Lie algebra. It is well
known'?® that the exponential operator exp (4 + B) of the
two-component Lie algebra {4,B ) is decomposed as

eA-{-B:eAef(a)B; f(a)::(l -e”a)/a, (1'5)

where [4,B] = aB. This decomposition formula is conve-
niently used®?® in solving the linear Fokker—Planck equation.
More general formulas on the Lie algebra including an infi-
nite-component one are also given in Sec. IV. These formu-
las are applied in Sec. V to derive the scaling theory'®!! for
transient phenomena near the instability point and to formu-
late a global approximation method of transient phenomena.

=¢l*5 (1.4)
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Il. DERIVATIVES OF GENERALIZED EXPONENTIAL
OPERATORS

In many systems far from equilibrium, a time-depen-
dent operator #°(t) appears usually and consequently the
following ordered exponentials ¥ (¢ Jand ¥ ~ (¢ are used'>"*:

Vit)= exp+f H\s)ds

+ 3 f dr, f dty f s, )L,
na ] JO 0 0

and “
~3(¢) = exp._ ( fyf ds)
=1+n§:‘,l(——1)"£dt1 fdtz
[ e 22

From the definitions (2.1) and (2.2), we have that

~YeW(t)=V{t)V " Y¢) =1 and that
d jo—
- Vie)y=2\V{t)
and
g-, Vole)= — V). (2.3)

Now it is easy to prove'* the formulas on the differentiation
with respect to the parameter £ appearing in #¢),

9 )= "y 15 88
5% Vie)= Vi) jo V=) 3 V (s)ds (2.4)
and

7= n=-[r- Visids ¥ =)

(2.5)

by noting that

a1, 9 _ -1 920)

d:(V (£) % V{t))—V (r) T Vit  (2.6)

These formulas will be used in the following sections.
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lil. GENERALIZED DECOMPOSITION FORMULAS OF
EXPONENTIAL OPERATORS

As was exemplified in Sec. I, the decomposition of ex-
ponential operators is very useful in quantum mechanics and
statistical physics.

The inequality (1.3) is easily extended to the following
theorem.

Theorem 1: For any set of operators {4, } in a Banach
algebra (i.e., normed space),

o a-(11)]

;—-! =1

s; (;‘H (4,4, ] Il)exp j;IIA Ll (3.1)

with an arbitrary positive integer p.
Proof: If we put, as in Ref. 18,

= exp( ZA ) and =[] exp (%A,), (32)

J=1
then the left-hand side of the inequality (3.1} is bounded as

lg" — 1l <l — hllep (=1 5 14,1).

In order to find an upper bound of the norm ||g — 4|,
we note first the following identity.’
Identity 1:

A ?
e“"*‘”:e""e"”—f dtfds
(] (]

(3.3)

XetA e{z—s)B [A,B ]esB e(.»i-—t}(A +B).

This is easily derived by noting the relation
A

1 _ezIA eABeAA(A+B] =f dtetA [e’B,A ]e——t(A+B)
4]

(3.5)

(3.4)

and Kubo’s identity*
[4,e] =f ds e~ [4,%°) . (3.6)
¢

By applying Identity 1 repeatedly, we obtain the following
identity.
Identity 2: With the notation 4,=0,

exp(,{ i A}) — eflA: e/lAz..,eMP

[l s e

><exp[t—-s i AH Ep: Aj,Ak]
j=k+1 J =

k+1

Mk 1 LMk

Xexp( Aj)exp [ —1) 2 Aj]. (3.7)
i=k
Here we have also used generalized Kubo’s identity
[4,64 7]
J ds & .. k1 A I
k =1
X [4,5 ] €7 H 1, (3.8)
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This is easily derived from the relation

P
[A,Bsz'"Bp] = 2 B,B,-By _, [A;Bk] Bk+1"'Bp (3.9)
k=1

and from Kubo’s identity (3.6).

Now we take the norm of {3.7). Then we obtain the
following inequality.

Inequality 1: For any set of operators {4, } in a Banach
algebra,

exp (/1 i A,-) — MM

j=1
A2 P
<2 SltdAlexe (1 S 14)1).
>k j=1

That is, we have an upper bound of the norm ||g — & || by
putting A = 1/nin (3.10). Thus, we arrive finally at Theorem
L.

(3.10)

By the way it may be worthwhile to note the following
identities.
Identity 3 (Kubo’s dual identity):

[4,7] = J: dse® [A4,57] " 97, (3.11)
Identity 4:

[Me#?] = J: dt f: dse—"Me—9B[ 4 BleBe. (3.12)
For an ordered exponential, we have the following gen-

eralized Kubo’s identity.
Identity 5:

{A {t)exp., ]: H (s)ds}

=) fods V=\s)A (1)) V )

= J: ds{Visid(t )V~ 1(‘9),‘495/(3)] Vit), {3.13)
and
[A (t)exp_ — Jvt H (s)ds]

- f ds V=18 (1Y 5V e

=v=0) [ ds (V0 ) (3.14)

with V(¢) defined by (2.1).

The proof of Identity S is easily given by differentiating
the function f(t,t") = V ~'(t)4 (t'\V (¢t) — A (t ') with respect
to tand by putting ¢’ = ¢ after integrating the differential
equation thus obtained.

Now we discuss some symmetrized product approxi-
mants of exponential operators, which was introduced by
Hirsch ef al.'® and De Laedt ez al."” by modifying general-
ized approximants by the present author.'® First we discuss
the symmetrization of (1.3) with respect to the operators A
and B. We have the following inequality.

Theorem 2: For any operators A and B in a Banach
algebra,
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I IeA+B_ (e(l/Zn)Ae(l/n)Be(l/Zn)A )nl I 5_1_242(A’B),
n

(3.15)
where
4,(4,B)=A,(4,B)exp (4] + |B ),
and
A,4,B)=4 {|[[4.BLB]|+3l[[4.BL4]1]}.  (3.16)

It should be noted that the upper bound of the difference
between the two operators [namely, exp (4 + B) and the
symmetrized approximant] decreases®'? proportionally to
n~2as n increases. Thus, the above symmetrized productisa
much better approximant.

Proof of Theorem 2: First we prove the following ine-
quality.

Inequality 2: For any operators 4 and B in a Banach
algebra,

lle# A+ 5B) — t/24 AB GA/N4 || < A (A4,AB), (3.17)
where 4, (4,B ) is defined by (3.16).

The proof of Inequality 2: If we put

FA)=1— et/ B gld/24 g—2d+B) (3.18)

we obtain F(0) = 0 and
J

_d__ ______1_ (A /24 AB *
FQi) > e & J; G (s)ds

dA _

Xt/ g—Aid+B) {3.19)
using Kubo’sidentity (3.6) and his dual identity (3.11), where
Gis)=e""[A,B]le "M _e—P[4,B] ¢>. {3.20)
By noting that G (0) = 0, we have

Gs) = f du[% e [4,[4,B]] e~ WP

0

+e~“?[B,[4,B]] e"”]. {3.21)
Thus, we obtain the following formula.
Identity 6:
FU+E) - fA/94 JB /U4 —I'J% dtf'ds

2 ) o
Xe(t/Z)A exBG (s)e(t/Z)A e(/l — 14+ B)’ (322)

with G (s} defined by (3.21).
Therefore, we get the inequality (3.17). By using an ine-
quality similar to (3.3) and Inequality 2 for A = 1/n, we ar-

rive finally at Theorem 2.

For a general set of operators {4, }, the following weak
bound has been proven® already. -

Inequality 3: For any set of operators {4, } in a Banach algebra,

V=1

y 4
172 1 172
exp (Z A,-) — (/2. 12— 1My 120 172, Y

(3.23)

< s S i) e (5 141)

However, an upper bound 4, (4,,4,,....4,)/n” stronger than (3.23) is obtained recursively by applying Inequality 2 as

j=1

<

i=1

+

J
Therefore, we obtain the following recursion relation:

P
A,(Ayd,) = 4, (Ayyd,) +42(A1, s A,).
i=2

Thus, we arrive at the following inequality.

P
A /2 Ad, (A/2
exp (/1 ZAJ) — (1P M Ay JAS Mp-umem/zu,)l l

/)
A4
oA 724, {exp ( A z Aj) A2, M oA /2).4,] oA 724,
o~

2 A 2 A
exp (1 5,4)) ~exp (F)owp (1 5, 4 oww (34|

P
l gA,_(AA,,/l ZZAj) +eHlIA, _ (14,,..,A4,). (3.24)
Jj=

(3.25)

Inequality 4: For any set of operators {4, } in a Banach algebra,

=1
where 4,(4,,...,4,) is given by

p—

K=

P
A
exp (’1 2 Af) — /A, A DMy 1 Ay SRS (A 214,

<4,(Ad,,...A4,), (3.26)

=1

k—1 - (4
4y dpery) =S exp (z} ||A,||)42(A,,,Ak+1 bt A)< Ay Joxp (.z ||A,||),
J = \

and

- ) Sl
Ap(Al""’Ap) = kZ A iAoy + +Ap)'
=1

(3.27)

This inequality yields the following theorem in a way similar to the proof of Theorem 1 through (3.3).
Theorem 3: For any set of operators {4, } in a Banach algebra

=1
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P
exp ( $ A,-) O LY S R L PRI MYR Y.

~ P
<14, e (S 140),

=1

(3.28)
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where ZP(A,,...,AP) is given by {3.27)

The above symmetrized decomposition of exponential
operators is extended as follows. Hirsch ef al.'® and De
Raedt et al.!” introduced a symmetrization of the form

eA (4+B) _ e(/l 724 e(A /2}B e(/l 3/4)C, e(/l /2B e(l /24 + 0 (l 5)
(3.29)
for two operators 4 and B, where
Cy=}[[BA],4+ 2B |=4R,(4,B). (3.30)

This is easily extended to any set of operators {4,,4,,...,4, }
as

exp (/1 .i Aj)

j=1
= g /M, AP AR AN, A (49,
h (3.31)
where
1 [ P a4, s
=% — | ——{ @ Poeg '
7 e taad (
P
X ex (/l A.)e“"”z""'-ue_wm")] .
p j;l 7 1—0
(3.32)

Inordertofind R, = R, {4,,...4, ) explicitly in terms of com-
mutators of {4, }, we apply repeatedly the following proper-

ty:
eA{A,B] _ e(/l/Z)A eAB e(l/Z)A =,1 SRZ(A*B) + 0(,1 4)’

' (3.33)
being equivalent to (3.29). The recursion formula for R, thus
obtained is given by
R,(4,,..,4,)

= RofAydy + -+ A,) + R, 1 (Ardsyd,)  (3.34)
through the relation
exp (/1 i Aj) - e(uz)A, exp (/{ i Aj) o724,
j=1 ji=2
2
=/13R2(A1,z Aj) +0@AY. (3.35)
i=2 ‘

Therefore, we obtain
p—1
R,(Aydy) = Y Rofdi, Ay + -+ 4,)  (3.36)
k==

The above arguments can be generalized in the follow-
ing.

Symmetrized Decomposition Formula: For any set of
operators {4;},

exp (2& i Aj)

=i

= Mg ASs T Sana
..e’l int+lg w1, e;_ ’8, e’“"me’“',
where with S, = 0 we have
1 Fr+! (e 'S
2(2n -+ 1) [8/1 et

= A8, o= Mp ,— 4,

(3.37)

wm+1 =
-] ves@
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X exp (2/15: A,) e M

i=1

— 44, -»1333...3—'{25- "Syn - ;)}

e~ Mg (3.38)

A=0
One of the remarkable points in the above expansion
formula is that only odd terms in A appear in (3.37). That is,

exp (/l Ep: Aj)

=1
g e('{ /Z)A’-..e“'1 /24 4 e(’t / 2’383

...eM 727741 Sg + '...e('{ 72°S, eu' 794,

e DA QL2+, (3.39)

namely there appears no correction of the order of A >*+2in
the above expansion {3.37) or (3.39).

The proof of this formula is given by mathematical in-
duction. For this purpose, we put

F = < AA 35
(A )=exp (2/1 2 Aj) 2= @M A5

=1
...e’{er' lSZ!H»I an 1 (/1 )e'{zn*‘ ’52»14— 1
'S Mg, (3.40)
It is easy to show that
S;=4R,(4,,4,,....4,)
and
FA)=1+0(% (3.41)

with (3.36). Now we assume that S, _ , is given by the form
(3.38) for k<n and that F,,  (A)=1+0A%**? for
k < n. First it is shown from the above assumption that

Fpd)=e*"TSmE, )t e (3.4
+ +

where F,, (A} =1+ O(4***), at least, from the defini-
tionofS,, , ;. Next,fromthepropertythat F(A )F(—A) =1,
we have F,,  ;(A)F,,  :{—A)=1. Thus we obtain that
F,, . 3;{A)=1++ 04 *°). Therefore, we arrive at the con-
clusion that the above assumption holds also in the case of
n + 1. This completes the proof.

The convergence of the above general expansion formu-
las (3.37) and {3.39) can be shown in a way quite similar to
that'® for the ordinary Zassenhaus formula for a certain
range of A.

The above symmetrized decomposition formula gives
the following approximation method.

Generalized Symmetrized Approximants of Exponential
Operators: For any set of operators in a Banach algebra,

exp (i Aj) =F, n(Ayd,) + O(1/n*™*2),  (3.43)
'

=1

where
12
Fopltrd) = V30120 1505,
w2V S 1/80)S,
(172n)4, 172
Xe P"'e( / ”M))"’

with {S,, | | defined by (3.38).

(3.44)
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By the way, it may be also instructive to note the follow-

ing identity.
Identity 7@ With Kubo’s notation A*B
=[A4,B]=AB — BA,
t
ol A+B) _ o etBexp+ [J ds e—sBx(e—sA *_ l)B ]
[exp [J dse®™(e4™ — 1)B ” Bod, (3.45)

The proof of this identity is straightforward. This will
be used to derive some identities for the two-component Lie
algebra such as (1.5) for 4 *B = aB, as will be discussed in
the succeeding section.

The above identity is easily extended in the following.

Identity 8:

p t
exp (t Y Aj) =e"ePexp, f D(s)ds
=1 o

= exp_ f D(— s)ds e»-et,  (3.46)
(V]

where

D(s)= THE) @M e T )4, (3.47)

S e

The proof is straightforward.

The above identity 8 is also extended to ordered expon-
entials in the following.

Identity 9:

exp., f ds{A (s) + B(s)}
=exp, JtA (s)ds exp_,. ftB (s)ds
Xexp. f C (s)ds,

exp_ Jt ds{A (s) + B (s)}
J

=exp_ f C_(s)ds exp_ f B (s)ds
(o] 0

Xexp_ f A (s)ds, (3.48)
0

where

C,.(t)=exps (I\CJ:B ><(s)a's)

X [exp; (¢£A x(s)ds) - 1]3 (t). (3.49)

The proof of Identity 9 is given as follows. First we put

F (t)=exp_ ( — J: B (s)ds)

X exp_ ( — J:A (s)ds)exp . J: {4 (s) + B(s)}ds,

and

F_(t)=exp_ f ds{A (s) + B (s)}

Xexp., ( - LtA (s)ds)exp+ ( — J: B (s)ds).

(3.50)
Then, we have
%Fi(t)=Ci () F . (t)and F_(0) =1, (3.51)

where we have used the relations (2.3) and the following
identity.
Identity 10;

(exp + J:A ><(s)ds)B (t)

= (expi LtA (s)ds)B (t )(exp; - J:A (s)ds). (3.52)

In order to obtain expressions of {5, . , } explicitly, the following alternative formulation of the symmetrized decompo-
sition formula will be more useful. First, from Identity 8, we have

exp (u 3 4, ) M F\(A )™,
i=1
where

FiA)=-exp, fi D (s)ds exp_ -r D(—s)ds

(3.53)

(3.54)

with (3.47). Thus, the expansion coefficient S,, , ; in (3.37) is given by

n + 1

2021 + 1)t [3,12"+1

S2n+l =

—A—lg T s _m-1g
e 2 L A3S, Fl('{ ) e A S,_._e 2n — | .
A=0

(3.55)

This is very convenient, because the right-hand side of (3.55) is expressed already in terms of commutators of 4,,...,4,,. For

example, we have

5= (3,13 F ))4 -

2 x x x
é :/12 (M7 MEn) (MF g —I)Ak]
K=>

This agrees with the result (3.36), as it should be.

605 J. Math. Phys., Vol. 26, No. 4, April 1985

1(3,12 “ ))ho:%(aizzm_'”)

A=0

=% 2: [ , ArAF+S (A,-X)zlAk. (3.56)

!#Jj<
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In particular, for p = 2 we have

—--—Qi— ! {/V(AX+B’<)2}B——6-AX+ZBX)A <B,

_ Q4 {Qz.Q, _1 x 1 x x\4
S-—s 53 S[SB’A B]+5!{~/V(A + B*)*}B,
- Q6 [9,,0:] | [@0@i] | [Q1,(Q1,0,]]
S=27 7.3 + 7.5 + 753

=7 [Sy4 *B] +Tle [S, {4 (4" +B*)*}B] +~7‘T{/V(A X+ B*)}B,..,

(3.57)

where the symbol .#” denotes the ordering that B * should be on the left-hand side of 4 *, and the {Q, } are defined by

Q, = (/) {A#" (4> + B*)"}B.

(3.58)

Any higher-order term S, , ; can be obtained similarly from (3.55) with the use of the following general expansion formula on

Fid)
Fir)y=F{ A)FT Q) (3.59)
where
A A
Fr (/1)=exp+f (e "B  e— —1)Bds=exp+f {#e—*+2"_1)}Bds
: e O V(B V7 R
A “+
; Q"+,.;m_, mintmey oo
I Y ol Vi S 3.60
* n,2= z=1("1+ +”k+k) (”1+n2+2)(”1+1)an in+ , ( )
and
A n ny e+ n+ k
_ . N N o Vo O 1 M
= — 1\ Bds=1 @, .
Fré) exp_J; (e )B ds +k2=:1n,2=' 2=':1('11-|' s n Kk )e(ny 40y 4+ 2)n, + 1) OriCn,
(3.61)

iV. DECOMPOSITION FORMULAS OF LIE
EXPONENTIALS

In the present section, we derive some decomposition
formulas of exponential oprators composed of generalized
Lie algebra.

The simplest example®® of such exponential oprators
may be exp(d + B) for the two-dimensional Lie algebra
{4,B ), namely [4,B ] = aB. As was mentioned in Sec. L, it is
decomposed as {1.5). It is easily extended in the following.

Formula 1: If [A,B] = aB, then

exp (4 + B) = exp{A f(a)B }e' exp{(1 — 4) f(a)B}
4.1
for an arbitrary value of A, where @1

flo)=1=2"" and Fla)=efia) = £,

(4.2)

The proof is given by using the formula (1.5) as follows:

eA+B_e{A+AB}+(1—A)B e4(+lBef(a)(1~A)B

= AT@B A J1=2)fl@B, (4.3)

where we have used the fact that if [4,B]=aB, then
[4,B’] = aB'for B’ = AB,andhavealsoused thesimplerela-
tion
¢t e/ B g =4 = gFie (4.4)
The above formula will be applied in Sec. V to the relax-
ation near the instability point.
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It should be remarked that the above decomposition
formula (4.1) holds for any value of A. This freedom will be
used in the succeeding section in order to find a global solu-
tion of nonlinear relaxation from or near the unstable point
of the relevant system.

The above result is easily extended to a more general
case.

Formula 2: If [A,B] = aB, then

exp, J.‘ {als)4 + b(s)B }ds

= exp U: b (s)A (st Jexp (a J: a(u)du)dsB ]
X exp (J: a(sjds A )exp U: bisi(1 —As,t))

X exp ( —a f a(u}du) ds B } (4.5)

1

for an arbitrary function A {s,2}.
Proof: First we prove the following lemmas.
Lemma 1:

exp., f’ {a(s}4 + b(s)B }ds
= 404 gxp U" bis)e~*%ds B }, (4.6)

for [4,B] = aB, where
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Hit,s) = Jl a(s)ds. (4.7)
Lemma 2: For [A,B] = aB,

exp, f t {a(s)4 + b (s)B }Yds

= exp [ f b (s) e dsB} oM, (4.8)
0

The proofs of Lemmas 1 and 2 are given in the same way
as for Lemma 3.

Now we extend the above arguments to the following
infinite-dimensional Lie algebra

[4(¢),B(s)] = a(t,5)B (s). (4.9)
This appears when we treat Fokker—Planck equations with
time-dependent drift and diffusion terms. We have the fol-
lowing formula.

Formula 3: For the Lie algebra (4.9) we have

exp. f {4 (s) + B(s)}ds

= exp, (J:A (s)ds)

Xexp., (J:B(s)exp ( — J; ' a(u,s)du)ds), (4.10)

and

exp_ f t {4 (s) + B(s)}ds

= exp_ (J: B (s)exp (J; ' a(u,s)du)ds)exp_ J:A (s)ds.

Proof: If we put w1
G(t)=exp_ ( — J; tA (S)ds)Cxp+ E{A (s) + B (s)}ds,
then we obtain 12
4 60)={exp_ (- [ 4xwas)p)]a1n
= [exp ( - fo als.t )ds)B (t )]G(t TSE)

where we have used Identity 10 in (3.52) and the commuta-

tion relation (4.9). The integration of (4.13} yields (4.10).

Equation (4.11) is also derived in a quite similar way.
Formula 3 is transformed into the following form.
Formula 4: For the Lie algebra (4.9),

exp., f ' {4 (s) + B (s)}ds

=exp, U:B (s)exp (‘[ t a(u,s)du)d.;]

Xexp., J-tA (s)ds, (4.14)

and

exp_ J“ {4 (s) + B(s)}ds
=exp_ f IA (s)ds
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Xexp_ L ‘ [B (s)exp ( - f a(u,s)du)]ds. (4.15)

The proof of Formula 4 is given by putting
A(s,t) = exp( — foa(u,s)du) and 4 (s, ) = exp( — Scx(u,s)du)
in the following lemma. '

Lemma 3: For the Lie algebra (4.9), we have

exp . J:A (s)ds exp J:/{ (s, )B (s)ds
=exp, U:/i (s,2 )B (s)exp (L t a(u,s)du) ds

[

Xexp, ft A (s)ds (4.16)

for an arbitrary function of A (s, ).
Proof of Lemma 3: 1t is easily shown by noting that

exp, (J:A (s)ds)exp + (_L ‘/l (s,2)B (s)ds)
Xexp, ( — J:A (s,)ds)

=exp, U:/?. (s, Jexp ( J(; t a(u,s)du) B (s)ds]. (4.17)

In particular, when [B (¢ ),B (s}] = O for any values of ¢
and s, we have the following decomposition formula.

Formula 5: For the Lie algebra (4.9) and for
[B(t)B(s)] =0,

exp, J: {4 (s) + B (s)}ds

=exp, J; {(1 —A(s,2))B (sexp B, (s,2)}ds

Xexp, U ‘ A (s)ds) (4.18)
Xexp, J(; {A (s,2)B (s)exp( — B . (s,t))}ds,
where
B.lst) =f alusidu, B_(st)= J: alus)du.  (4.19)

This is easily derived by applying Formulas 3 and 4 to
an exponential operator of the form
exp, fo  {[As)+(1—-A(st))B(s)] +4(s,2)Bls)}ds by
noting that

[4(s)+ (1 —Als,))B(s)B(s)] = als,s')B(s)
under the assumption in Formula 5.

Formulas 1 and 2 are some special cases of Formula 5.
These formulas will be applied to solve rigorously or asymp-
totically Fokker-Planck equations with time-dependent co-
efficients in the succeeding section.

(4.20)

V. APPLICATIONS TO TRANSIENT PHENOMENA NEAR
THE INSTABILITY POINT
A. Linear case

Decomposition formulas in Sec. III have been already
applied to Monte Carlo simulations of quantum sys-
tems.”'517-1%-23 The purpose of the present section is to apply
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the decomposition formulas presented in Sec. IV to relaxa-
tion phenomena.

First we discuss here the following simple linear
Fokker—Planck equation:

d ( d 32)
—Plxt)=| —— — | P(x.t). 5.1
el o X eos) Pt (5.1)

This is a well-known exactly soluble equation. As a simple

instructive example, we try to apply® Formula 1 or Eq. (1.5)
to the following formal solution of (5.1):

Pix,t)=exp ( — t—a— ¥x + te i) -« P(x,0). (5.2)
Jx Ix?

Then, by noting that [4,B] = aB with a = 2yt and with

A= —t—a—yx and B=te-éz—

ox

g (5.3)

we obtain

Pix,t)=-exp ( — t—a—yx)
ox

X exp [(1 —em ) (i) ‘9—2} P(x,0)

2y /) ox*
_ {217'6((327’— 1)]_ 12
Y
p—e " }
xexp | ——2=¢ Xl ppody, (54
exp[ 2e¢(l — e~ ")/ y DOy, 34

where we have used the following formulas:
exp(—y(t)-é—x>P(x)=e""”P(xe—””), (5.5)
dx
and
32
exp (e(t) gx—z) P(x)

w0 2
= {4me(t)} ~ VZJ exp [ - M) P)dy. (5.6)
— 4¢(t)
These are well-known expressions.
Now we extend the above formulation to the following
time-dependent Fokker-Planck equation:

E; 9 &
= Plor) = ( — 5ol + b)) + e(t)gx—z) Px,t). (5.7)

The formal solution of (5.7) is given by the following time-
ordered exponential:

Pixt)=exp, U (= Ztate +05)

+ €ls) j—z—)ds] P(x,0). {5.8)
Ix?
If we put
A= -2 @+ () and B()=etr)L,
dx ax?
(5.9)
then we find again the following Lie algebra:
[4(2).B(s)] = 2a(t)B (s). (5.10)
Thus, we can apply Formula 3 to (5.8). Then we obtain
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Px,t)=exp, ( — J: —(;—1— (alsix + b (s)ds))

52
X exp (a{t) Ex—z) P(x,0) (5.11)
with
olt) = J.t €(s)exp ( - 2Jq a(u)du)ds. (5.12)
This is again expressed by the following integral:
Pixt)= _Al)
Vémalt)
= _(V—/i(t)X+f6b(S)ﬁ(S)dS)2]
XJ; 3 exp { 2ot)
X P(y,0)dy, (5.13)
where
Af{t)=exp ( — J‘ a(s)ds). (5.14)

Here we have used the following transformation formula:
xp. | = [ -2 (als + sl -P )
o dx

=Alt )P(/{ {tx —J b(s)A (s)ds). (5.15)
(o]

The above solution (5.13) has been already derived in differ-

ent methods.?**

B. Scaling limit

Next, we discuss some asymptotic applications of our
decomposition formulas given in Sec. IV. We study here the
following Fokker—Planck equation:

a

_(_29 K
= Plut) = ( ool +e axz) P(x,t) (5.16)

with a nonlinear drift velocity a(x,). The formal solution of
(5.16) is given by

P(x,t) = CXp (tfdﬁ& + tgdiﬂ-)P (x,t ), (5.17)
where
3 d
jdrift = — —a;d(x) and jdiﬂ' = egx—z. (5.18)

It should be noted here®*%?” that .% 4, and .% 4 do not
necessarily in general satisfy the Lie algebra. However, there
is the possibility® that the previous decomposition formulas
can be used in some asymptotic limit, namely in the scaling
limit.'®!!

As was discussed by the present author!®'! in the scal-
ing theory of transient phenomena, one of the most interest-
ing nonequilibrium phenomena is the relaxation from or
near the unstable equilibrium point. Such a situation is de-
scribed by (5.16) with a(x) of the form

a(x) = yx + (nonlinear term) (5.19)

for ¥ > 0. We are now satisfied'®'! in asymptotic evaluation
of relaxation in the small diffusion limit e—0, namely the
limit of small . ;. However, if we neglect the diffusion
term . 4 from the beginning in our unstable situation,
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then nothing happens.'®'! The diffusion term is essential in
the early state (or initial regime} of relaxation as was empha-
sized in the scaling theory.'*'!

On the other hand, the nonlinear part of the drift term
L ain becomes more and more important, as time ¢ in-
creases, because it gives a correct saturation effect. Thus,
both the diffusion term and the nonlinear part of the drift
term play essential roles in the relaxation from or near the
instability point. From the above arguments,'®!! however,
there is a possibility to treat separately the above two terms
in some appropriate limit.

In order to find what is our desired limit,'*'! we first
discuss the Jinear case (5.1) by neglecting the nonlinear terms
in (5.16) or {5.19). Then, the solution of (5.1) is given by (5.4)
or

X exp ( —yt —é—x) Py, (x,0) {5.20}
dx

from Formula 1 in (4.1). If the initial system is just at the
instability point x = 0, namely P (x,0) = &{(x), then the first
drift operator in {5.20) has no effect. Thus, we obtain

Py (x,t)=exp {eez”'(l —e ) (—1——) i }6():).

2y :9?
(5.21)
Therefore, in the limit of large ¢, we have
1Y) 3
Py, (x,t)=P§(x,ee’" )==exp (eezy (—2—;/—) ﬁ)é(x).
{5.22)

This form is also found directly from the explicit solution
(5.4)with P (»,0) = 8(y). It should be remarked here that (5.21)
is the exact solution of {5.1) and consequently that it contains
completely the linear drift effect through the decomposition
formula 1. That is, the second modified diffusion factor in
(5.20) plays a role of renormalized diffusion effect due to the
linear drift term. The function f {2yt )=(e*"* — 1)/(2y1 ) yields
the renormalization of time in the decomposition formula 1.
One of the most remarkable features of the above solu-
tion is that it has a scaling property in the sense that it is
invariant asymptotically for the following transformation

(5.23)

From this consideration, it is expected that our desired
limit is the scaling limit 1*''*® that

e—>€ =be and 1—t'=1t—{1/2yjlogh.

s¢ — lim=lim lim for  fixed, (5.24)
&0 w0
where
7= €’"". (5.25)

Even in the general nonlinear case, this scaling property is
expected to hold in the sense that the solution P (x,? ) of (5.16)
becomes a finite function only of the scaling variable 7 in the
above scaling limit (5.25).

Then, we discuss here the nonlinear case from our view-
point of scaling on the basis of our algebraic method, namely
the decomposition formulas presented in Sec. IV. The for-
mal] solution of (5.16) is also expressed as
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P(x,t) ="+ 2+C P(x,0), (5.26)
where
3 &
A= —t2 e B=1e 2
ax € o
C= —t-2 (apx)— ) (5.27)
Ox

As is seen from the above scaling argument in the linear case,
one substantial aspect of the scaling theory is the separation
of procedure to solve nonlinear systems with random force.
This separation is performed algebraically in the present for-
mulation. The above consideration on the linear case sug-
gests the following asymptotic separation®:

sc — lim e* * B+ C = g4+ C /128 (5.28)
where
flaj=(1—e*/a and [4,B]=aB. (5.29)

Here a == 2yt in the present problem.

In order to confirm the validity of this asymptotic sepa-
ration (5.28), we give first the following systematic expansion
formula.

Formula 6: When [4,B] = aB, we have

exp(4 4+ C+AB) =H(/1 Je? + € /@B, {5.30)
where
H{d)=-exp, J‘A G.(,u)d,u, {5.31)
and i
G(/l)=Jd g4+ C+AB) p,—sd+C+AiB)
o
X {1 =2 fla)bls — 1)}ds. {5.32)

In particular, the first-order term of H (4 ) is given by

1
0= [ -0 2, g
o Ix?

X {1 —2f(@)b(s — 1)}ds. (5.33)

Here, the exponential factor exp[s{4 + C )] is a drift operator
of the form

exp{sid + C)}-P(x)} =exp { — st%a{x)} Pix)

= {al€ (x,t))/alx)} P(&(x,t)),

(5.34)
where!!

§xt)=F e~ "F(x))
and

F(x) = exp f ) -;7(1}5 dy. (5.35)

Thus, we find that [G (0)/€] is bounded if a(x) contains a
nonlinear term by which the system approaches a finite sta-
tionary state. In general, [G {4 )/€] is shown to be bounded in
the same situation. Thus, we arrive at the conclusion that the
asymptotic separation {5.28) is valid in the scaling limit
(5.%;12.1 That is, the desired scaling solution for (5.16) is given
by
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P (x,t) = ¢ F e /7)1 Lam p () (5.36)

Each operator in (5.36) can be manipulated analytically and
consequently the scaling solution P* (x,¢ )is explicitly found
for a specific drift function a(x) and for any unstable initial
distribution such as

P(x,0)= —l— exp (
V2meo,

According to the expression (5.36), the renormalized diffu-
sion effect is essential in the initial regime. The nonlinear
drift term becomes dominant in the second nonlinear re-
gime, as was already discussed in a different method.!®!!

The validity condition of the scaling theory on the ini-
tial condition is given by

5 Se and o0,=0(l), (5.38)
as is seen from the above arguments. The condition (5.38)
assures that the initial system is located essentially at the
unstable point. When the above instability condition (5.38) is
not satisfied, the ordinary £2-expansion method,?*->° namely
the perturbational expansion around the deterministic solu-
tion, is valid.

- (115)_2) (5.37)

2¢0,

C. Scaling theory for Fokker-Planck equations with
time-dependent coefficients

Next we try to extend the above arguments to a time-
dependent Fokker—Planck equation of the form

9

at
In fact, any realistic nonequilibrium situation will be de-
scribed by (5.39) more appropriately than (5.16), because it
takes a finite time to make the relevant system quenched, for
example, from above the critical point to below the critical
point. This situation has been discussed already by many
authors >~

Now the formal scaling solution of (5.39) is given by

Pixt)= ( — —% alx,t) + €t) %5) P(x,t). (5.39)

P®(x,t) = exp, f L qanlshs
0

Xexp (D {t) %E)P (x,0) (5.40)
from Formula 3 in (4.10) similarly to (5.36), where
L qunlt) = — - afx1), (5.41)
ox .
and
Dit)= L €ls)exp ( -2 J; y(u)du)ds. (5.42)

Here 7t } denotes a time-dependent growing rate defined by
a(x,t) = y{t )x + (nonlinear term). (5.43)

Therefore, when the initial distribution is given by (5.37), the
scaling solution of (5.39) is expressed by

P®)x,t)=exp, ( — 'r?a— a(x,s)ds)PG(x,t ), (5.44)
o Ox

where
Pg(x,t) = {2mleo, + 2D ()}~
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x2

In particular, for the case of the laser model'®11:3¢ de.-
scribed by

alet) = Ae bx — gle 1, (5.46)
the scaling solution is given by
P®)x,z)
1 t — 372
= 1 — 2x2e— B ]
r=n [ 2x%e J; gls)e? ds}
X exp { - 2—:(2;—)(1 —2x? J:g(s)e"“"ﬁ"’ ds) - l],
(5.47)
where
{t) = (€0o + 2D (¢ )lexp (B (¢ )) (5.48)
and
Blt)= ZL y(s)ds. (5.49)

Now, one of the most interesting physical quantities in
the present problem is the onset time t, at which a macro-
scopic order or structure begins to appear, and which is de-
termined, in the present problem, by

(eoy + 2D (tp))exp B (ty)~1. (5.50)

In the special limit, we consider first the time-indepen-
dentcasethaty{t) = 7,g(t) = g,and €[t ) = ¢, namely sudden
quenching. Then, the onset time ¢, is given, from (5.50), by

to=~(1/2y)log [eloy + 1/7)] 4, (5.51)

as was already discussed in the previous papers by the pres-
ent author.'®!! Namely, the onset time becomes larger and
larger, as the strength of the random force € and the intial
fluctuation o, become smaller and smaller. This was
called'®!" synergism of the initial fluctuation and the ran-
dom force.

Next we consider the shift of the onset time A4z, due to
the time-dependent growing rate ¥(t ). As was discussed by
Weidlich and Haag,?' by Nozieres and Saint-James,*? and by
Wong,*® we consider the case of a linear dependence of y(t)
on time ¢ as

Y= —¥o for t<0,
Yt)y=vt -7y, for 0<t<T, (5.52)
) =7, for T<y,

with v = (3, + 7.)/T. Then, we obtain the shift of onset
time, At in the form
Aty =1t —t(T=0)=[{ro+7.V/27r.)] T,  (553)

for t,» T. Thus, the shift of onset time Az, becomes larger, as
¥, and T increase, as it should be. These results agree well
with those obtained by other authors.31-*? ’

D. Global approximation method (GAM)

Finally we try to extend the scaling theory to find a
global solution® of the system which is valid in the whole
region of time. Our idea is to make use of decomposition
formulas 1,2, and 5.
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We consider Eq. {5.16). Formula 1 suggests the follow-
ing approximation:

POAM(x.t) = exp (/1 (£)f(2y2 Jte g—z)exp ( =1 (% "(’")

xexp (1 = 2 (6)f 21 e Z) P
(5.54)

for the nonlinear drift a{x). The validity of this asymptotic
evaluation is confirmed and is shown to agree with the scal-
ing solution in the scaling regime. Our problem is to show
that the above solution is optimized by adjusting the arbi-
trary function A () in {5.54).

The criteria for determining A (¢ ) are the following.

(A) The fluctuation around the stationary point x = x,,
is given correctly up to the order of € in the limit r— .

(B) The function A (¢) is as simple as possible._

First we note that the distribution function P (x,t) de-
fined by '

Pix,t)=exp ( —t Tg— a(x))

X

X exp {(1 — A () f(2yt)te %} P(x0)  (5.55)

approaches a delta function (or sum of delta functions)
around x = x,, (if there are several stationary points). There-
fore, the fluctuation x = x,, of the solution P®A™ (x,7) in
(5.54) for t— oo is given by

(b — 2 P) = lim (24 () F (2t Je)

from the expression (5.54), by using the formula (5.6}. Now
we assume that {(x — x,,)°) = €0,. Then, we have such a
conditionon 4 {¢) as

AE)Ne — 1)/y=~o0, (5.57)
for large 2. The simplest form of A (¢ ) to satisfy (5.57) is
Alt)=o,ye ", (5.58)

Thus, we obtain the global approximation solution
PGAM)x 1) given by (5.54) with (5.58), namely

POAMYx £) = exp (%(t) %‘z) exp ( —t ;—xa{x))

(5.56)

X exp (e(t) -‘%25) P(x,0), {5.59)
where
€t)=(e/2¥)1 — e "Y1 — o, ye~ ) (5.60)
and
Et)=leo (1l —e= ). {5.61)

As a simple application of our global approximation
method, we discuss the laser model afx} = yx — gx°. This
system has two stationary states x,, = + (¥/g)"/? and the
fluctuation around them is given by €0, = €/(2y). Now the
global approximate solution of this system to give correctly
the stationary fluctuation for the initial Gaussian distribu-
tion (5.37) with 8 = 0 is given by®
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postr= o+ [* o (- £

X [1/(27r)?] (1 — 2gofr )£ %)~

<o (5 g)

(5.62)
where oft) = (1 — e~ *")o,, 4 = {2go(t)} ~'/? and
7 =1{t)e’""'=€{0, + (2 — e " *")oit }}exp (2y2). (5.63)
The above result (5.62) is rewritten as
POAM (1)

sl
2mleolt)r(t)? J - 27t

~ e T ) 1
2e0(t) \' (e~ +n(t)?)2) )

(5.64)
where n(t ) = 2gof(t ). This is our desired global solution. In
order to see how it approaches the correct stationary state,
we separate it into the following two parts:

POAMx 1} =PCAM) (x 1) + PCAM (x 1), {5.65)
where each part is defined by the positive and negative re-
gions of the integral (5.64) with respect to s, respectively. In
the limit of large £,P‘G*™ (x,t) is, for example, calculated
explicitly as

PGAM (x,1)
__exp [ — (x — x(t))*/2e01t)}
- 2mieot(t )r{t )2
® _ 8 —xe)le) 1
XJ; P { 2t) 2e0it Jexp (277) sz}ds
= eXp { — (LT_M
22reatt ) 2 2eoit)

_[ (x — x(¢ )p(e) ]‘/2]
€oft )rit Jexp (2y7)

_ 2
=P =t L _exp { —(x—i"i}, (5.66)
2 \27eo, 2¢0,

for x > x(t ), where x{t ) = n(¢)~"/? and we have used the fol-
lowing integral formula:

* 1
f e~ X —b/ g o 1 ie—2(ab)”z
o 2 a

for a> 0 and b > 0. Similarly, P‘®*™ (x,¢) is also shown to
approach P )(x) correctly for t—co.

The present result (5.64) obtained by GAM agrees with
Weiss’ result®® derived by using the path integral formula-
tion. ‘

The above formulation can be extended to Fokker—
Planck equations with time-dependent coefficients, (5.39), as

P‘GAM’(x,t )

= exp[ fo (1= s elsexp (2 f | 7’(""’“)‘” a%]

(5.67)
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Xexp.,. [ - J; %— a(x,s)ds]

X exp U:/l {s,2 )els) exp ( -2 J: y(u)du)ds 5{—2],
(5.68)

from Formula 5.

VI. SUMMARY AND DISCUSSION

In the present paper, we have given some decomposi-
tion formulas of exponential operators and Lie exponentials
and they have been applied to study the relaxation and fluc-
tuation from or near the instability point. A global approxi-
mation method of transient phenomena near the instability
point has been formulated on the basis of decomposition for-
mulas into three parts. An application to the laser model has
been presented in detail.

Here it should be remarked that spin operators belong
clearly to a Banach algebra, but that differential operators
such as .7 4 in Sec. V do not belong to a Banach algebraina
strict sense. However, if we confine operands (namely the
distribution function in the case of the Fokker—Planck equa-
tion) into functions {P(x)} which decrease rapidly for
X = + oo, then our decomposition formulas given in the
present paper are still valid.

Some applications to other phenomena such as combus-
tion®>3¢ and to nonuniform systems will be reported else-
where.
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N-dimensional spinors: Their properties in terms of finite groups
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A classification scheme is presented for the finite multiplicative group generated by the gamma
matrices associated with a given Clifford algebra. This group reflects the periodicities observed in
n-dimensional spinors, and its representations and other properties are studied, thus highlighting
the dependence on the number of spacelike and timelike vectors. The reality of the representations
is examined and tabulated; application is made to the imposition of Majorana and Weyl

conditions.

I. INTRODUCTION

In the study of the Dirac and wave equations on a given
space-time, Clifford algebras'~ play a fundamental role. Ac-
cordingly, they (and the associated study of spinors) have
been the subject of many investigations (Good? gives an early
review). The purpose of this paper is to study these algebras
and spinors by the study of an associated finite group. Such a
line of investigation is not new, but before reviewing this
work, a description of this group (made precise in Sec. II) is
in order.

Associated with a Clifford algebra is a natural finite
group,* the multiplicative group, generated by the gamma
matrices representing the algebra. For example, the Pauli o
matrices generate a group, abstractly the quaternion group.
This group, though finite, is large enough to refiect the repre-
sentation structure of the underlying group of metric-pre-
serving transformations and the related spin groups we are
interested in. Indeed, the nontrivial representations of this
group generate the fundamental spin representations of the
underlying orthogonal group. The connection is as follows.
A rotation can always be expressed as a product of reflec-
tions. The group we are considering is the double group of
the (abelian) group of reflections in the coordinate axes. Such
finite groups have a very specific structure; they are extra-
special groups or their central extensions (described in Sec.
II). These finite groups provide a useful and simple method
for studying n-dimensional spinors and properties of Clif-
ford algebras.

This underlying finite group has been mentioned or
used in passing by a variety of authors. Eddington® noted the
four-dimensional case’s relation to the group of collineations
of Kummer’s quartic surface. Boerner® made use of them
when describing the spin representations of the orthogonal
groups.” Remakrishnan encountered them in a program he
calls “L-Matrix theory,” and tried generalizing the group to
describe para-Fermi statistics.® More recently, Salingaros
encountered these groups when putting a group structure on
the differential forms of a given space-time,® and he later
identified their connection with extraspecial groups.'® (This
contains some errors, noted later.)

The same group we are describing also arises in a var-
iety of other contexts. First, a uniform description of the
double groups of the (finite) reflection groups has been devel-
oped.'! Here the double group is generated directly in terms
of a Cartan matrix and these extraspecial groups. This gener-
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alizes Schur’s'? work on the double group of the symmetric
group and has significance for those interested in lattice sym-
metries.> Second and more recently, this group has arisen
when constructing vertex operators associated with a Kac—
Moody algebra.' In this regard, the method of classification
developed later is particularly useful. These groups also ap-
peared in the classification of the finite simple groups.®

Despite their ubiquity, it appears that a detailed de-
scription of these groups is lacking in the mathematical
physics literature. The purpose of this account is to provide a
new direct classification of the group associated with an al-
gebra of given dimension and signature. In so doing we shall
also review many of the known properties of these groups
and their representations. These results will be applied to the
known representation theory of Clifford algebras and spin-
ors, so obtaining results which are frequently used in super-
symmetric calculations today.'®

An outline of the paper is as follows. In Sec. II we asso-
ciate a group to a Clifford algebra with a given dimension
and signature. The elementary properties of this group are
given, and it is shown the group is one of five types; it is
extraspecial or a central product of one of these. This section
is mostly review. Section III answers the question: which
group is to be associated with a specific algebra. The tech-
niques of this section are new and improve the existing enu-
merative method of classification. It is this section that is
particularly relevant to the discussion of vertex operators.
Having now associated a particular group to a given signa-
ture and dimension, Sec. IV discusses the representations of
these groups. Many known results are drawn upon in this
section; some old results are slightly extended so the reality
properties and orders of the group elements may be dis-
cussed; the tensor products of representations are described.
Section V gives some application of these results, showing
how the Majorana and Weyl restrictions on spinors may be
imposed. Section VI is a brief conclusion.

Il. CONSTRUCTION AND PROPERTIES OF THE GROUP
ASSOCIATED WITH THE ALGEBRA

In this section we shall associate a group with a Clifford
algebra over a space-time with given signature. We shall
identify the group as one of five types and in the next section
determine which of these groups is associated with a particu-
lar signature and dimension. First, we define an algebra over
the field F by the anticommutation relations
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ex?=77ii’ 74€F, (la)
iA, 1<i, j<n. (1b)

If the field is of characteristic different from (2), (char F 52)
these may be expressed equivalently by

¢;¢; +ee; =0,

ee; +ee; = [e,e} =29,6,=2g,. (2)

When all the g; are zero we have the Grassmann, or exterior,
algebra; with ; = 4 1, we have a Clifford algebra. Let

7= +1,

7y = —1, r<i<n. (3b)
We label this algebra C™*, withs = n — r. We may think of n
here as the dimension of the underlying space-time, and s the
number of spacelike dimensions.

Associated with this Clifford algebra is a finite group,

G ""~"; loosely, this is the group of products of the units of
the algebra. The abstract definition of this group is

i<r, (3a)

Gr,n—rE<Fl’F2,...,rn,—1|1=(—1)2=sz, .]Sr;
—1=r?, r<k<n, @
[Fol)= -1V i, [[,—-1]=1).

The group is written multiplicatively with identity 1 and
group commutator [x,y] = xyx 'y~ ". (The same group is
obtained via a differential geometric construction by Salin-
garos.>'%) When no confusion arises, we will drop the super-
scripts from G. The group G is realized as the multiplicative
group of products (and their negatives) of the gamma matri-
ces which represent a given algebra.

We proceed now to identify the class of groups G we are
dealing with. This is done by determining the conjugacy
classes of G, its center, and commutator. Letg = I, I, I,
=I,,; ., Withi; <i, <. <iy. Thereare (3) such possible g;
including their negatives, there are 2(3). Thus the order of G
is |G | = 2'*". The conjugacy classes of G may be seen from
the following identities:

g '=(-1° ifi#i, j=1,..4d, (5a)
rgry'=(—1¢""g ifi=i, somej=1,..d.(5b)

The elements g and — g are therefore in the same conjugacy
class unless 7 is both odd and d = n. Only in this latter case
will g (and also — g) be self-conjugate (like — 1 and 1), and
so in the center of G,Z (G ). As there are (}) distinct elements
r;,,. .., there are then 2" + 1 conjugacy classes of G for n
even, and 2" + 2 = 2(2" ! 4 1) conjugacy classes for n odd.

To identify the structure of the center of G in the case n
odd define

A=I\lyT,. (6)
Then
A2 =(—q)pin+z—r (7)
We have, then, the following cases for the center of G:
(—1)=C,> neven,
(— D) X(4)=CXEC,
Z(G)= if n odd and

n(n + 1)/2 — r even,
= (4 )=C,, if n odd and
nn+ 1)/2—rodd.

(—14)=
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Here C;, denotes the cyclic group of £ elements.
Using the results of Eq. (5) we find the following:

G'=[G,Gl=(—1),G/G'=C,XC,X~XC, ntimes.

Thus G /G’ is elementary abelian and hence G’ = @ (G),
where @ (G is the Frattini subgroup'’ of G, the intersection
of all the maximal subgroups of G.

This structure to G is quite restrictive and specifies G.
We recall the following definition and lemma.'”'8

Definition 1: A group is a p group if every element of the
group except the identity has order a power of the prime p. A
pgroup E, such that |E | = p' * ?* is known as extraspecial if
E'=®(G)=Z(E)=C,.

Lemma 2: Let E be an extraspecial subgroup of the p
group P, such that [P,E]<Z(E). Then P=E©° C,(E).

Here (and throughout) © means the central product of
two groups: that is, the direct product with centers identi-
fied. (This is distinct from the Kronecker product, which is
mistakenly described in Salingaros.”!° Also, Cs;(E ) denotes
the centralizer of Ein G. In the case when n = 2m, our group
G is extraspecial. Further, we have for n = 2m + 1,

[GE1<[G,G]=G' =Z(E), |E|=2"+,

and so the conditions of the lemma are satisfied. Thus when
n is odd the group G is a central extension of an extraspecial
group. In particular

G=E°Z(G), |G|=2""*% |E|=2"*1 (8

To complete the specification of G we need to know
more about the extraspecial groups E. We recall'>?° that
there are two nonabelian p groups of order p*, each being
extraspecial. In our case, these are the dihedral and quater-
nion groups of order 8, denoted D and Q, respectively,
throughout this paper. Further, every extraspecial p group is
the central product of these two nonabelian p groups. If
P,,...,P, are extraspecial p groups of order p’ then, up to
isomorphism, there is only one central product of P,,...,P,,,
with center of order p. This is extraspecial of order p?™ *!
and denoted P, © P, 0 -.-o P, . We can talk therefore about
the central product of P,,...,P,,. How many different extra-
special groups of order p>™ ! are there? For the case p = 2
we are considering, the answer to this is given by the follow-
ing theorem.?°

Theorem 3: Let E,, be an extraspecial two-group of or-
der 2™+ !, Then there are two types of isomorphism classes
of such groups, namely the following.

{a) E,, .. , the central product of m dihedral groups D.
This possesses maximal abelian normal subgroups of type

(4,2,...,2) and (2,2,...,2):
m—1 m+41

(b) E,, _ , the central product of (m — 1) dihedral groups
D and one quaternion group Q. This possesses maximal abe-
lian normal subgroups of type (4,2,...,2).
m—1

This theorem is readily proven once the following equi-
valences are established:

QOCZ" ED°C21‘, k>1, (9)
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QoQ=DoD, (10)

Q0 C,=D 0 C,=CyXC,XC,. (11)

Bringing these results together, the group G we are in-
terested in belongs to one of the following five classes:

ifn=2m, G=E,, orE,_, (12a)
fn=2m+1,
G=E,oC, of G=E,  °(C;XCy)=E,,, XC,
(12b)

Here the two classes of (12a) are those given by Theorem 3.
The odd case uses (8)—{10) for the first possibility; the second
two possibilities are shown by direct calculation. We note
that when n = 2m + 1, the class of extraspecial factor does
not matter if the center is C,.

Thus far we have identified the groups G associated
with a Clifford algebra as being one of five classes. We must
now determine which class is associated with a given signa-
ture and algebra C™*. This is done in the following section.

ill. CLASSIFICATION OF THE GROUPS

In the last section we associated a finite two-group with
a Clifford algebra C™*. This group was one of five canonical
forms (12) and the purpose of this section is to provide a
simple way of determining which type of group we have,
solely from the signature of the metric (2) used in the alge-
bra’s construction. The method of classification is based
upon a quadratic form defined by the group. This method
simplifies previous enumerations,'® where the group was
constructed from a knowledge of the orders of the elements.
Another advantage of this method is that the periodicities
associated with a Clifford algebra may be clearly seen.

The steps involved in this classification are as follows.
First we shall use the group to define vector space and a
quadratic and bilinear form, which act upon this. Then we
shall decompose this vector space into a pairwise direct sum,
noting how the quadratic form so changes. Associated with
each pair we can attach a group, and overall we have their
central product. We conclude the section with an example.

We now associate a quadratic form with our group. Be-
caused (G ) = G',thecommutator quotient G /G ' is elemen-
tary abelian and this may be naturally regarded as a vector
space ¥ over the field F, of two elements.?! If
x = (a},a%,....a;)e G/G’, then associated with this is the
vector (iy,iz,.-.,i, ) where i; = 0,1. Here, V™ is equipped witha
quadratic form ¢ and a bilinear form f given by (with
xyz€G)

glx)=a, wherex’=C% (C)=G’, (13)

fixy)=b, where [x,p] =C® (14)
It is verified that g is well defined, and using

(P XY PLxy= A, (15)
we get

glxy) = q(x) + qiv) + f(x.p), (16)

q(xyz) = glx) + qly) + qlz) + f(xy) + f(x.2) + fp.2).
(17)
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These hold because G’ < Z (G} and so the following commu-
tator relations are true.
Lemma 4: For G' < Z(G)

[x.xz] = [x.2], (18a)
[xpz] = [xyllx.2), (18b)
[x.xyz] = [x][x.2], (18¢)
byxz] = [x,z)xpllv,2). (18d)
From the defining relations (4) of G, we have

L) =1, i#j, (19a)
qry)=1, i>r (19b)

We now proceed to decompose the vector space pair-
wise, such that V" = V2@ V"2, and see the effect on the
quadratic form ¢ and bilinear form /. Let I',,I,,...,[ ", be the
natural basis of ¥ associated with the I';. Then if we take as
our basis of ¥~ %I\ [,I},j = 3,...,n, the lemma gives

SO LLG) = fI0,0 1) =0, 3<j<n,  (20a)
______ (20b)

Therefore the bilinear form f is left unchanged, while the
quadratic form upon using (19) and (20a) becomes

g\ oL = oI + gl + alT)

+ AT + f(5o D) + £ATT) (21a)
al)+ 1, if qIy) =q(l),
‘[mnx if g7 (). (210

Thus setting (/,m) = (¢(T",), ¢(T">)), an initial (0,1) leaves the
quadratic form on ¥"~?2 unchanged, while (1,1) or (0,0)
changes the remaining ¢’s.

Continuing the procedure, we decompose ¥ " pairwise
until we are left with no elements (n even) or a single element
(n odd) remaining. According to the quadratic form on these
orthogonal subspaces we may associate a group:

(i) (0,0) and (0,1) yield D,

(i) (1,1) yield Q,

(iii) (0) gives C,XC, =V,

(iv) (1)gives C,.

These identifications come from our choice of signs for G,
and by applying q and fin the manner described. Here, G is
the central product of the groups that appear in this decom-
position.

Some comments on this procedure are in order. First,
the independence of the order of the basis of ¥ (and so the
order of the 0’s and 1’s in our precription) is reflected in the
isomorphisms (10) and (11). Second, when » is even, the re-
sulting groups are the two extraspecial two-groups. These
correspond to the two possible nondegenerate quadratic
forms?? over F,. We have?

(a)if E,,, =D,oD,0..0D
and

D; =(A;B|4}=B}=E,A,B,=B;'4,),
then
g By A7 B7AT B =rs + 15+ o+ 1S,
(b)ifE,,_ =D,oD,0w0D_ _,0Q

m

H. W. Braden 615



and

Qn = (4,,,8,,),
then
qidy By-A 7 BY)

=S T 1Sy T S+ S
The space ¥ constructed from E,, |, ,E, _ , with fas its fun-
damental form, is a symplectic space. When n is odd we have
a degenerate quadratic form. The last entry in this case cor-
responds to the A constructed earlier (6) which squares either

to +1lor — 1.
Third, we have from D o D = Q o Q, the periodicity

GPi=GP+4I—4 (22)

where G is the group corresponding to C#. Finally, be-
cause combinations of four 0’s or four 1’s may be separated
out without effecting the quadratic form on the remaining
space, we never need consider combinations of more than
three 0’s or three 1’s. All the possible groups are readily
enumerated. We have

GP+4,q=Gp.q+4=DoQoGp,q_ (23)

This modulo 4 periodicity changes the extraspecial group
structure. There is the modulo 8 (or Bott periodicity) which
preserves the extraspecial group structure:

GP+¥ =GP 3 =DpDoDoDo Do GPi, (24)

where G”*+®?and G are of the same ( 4, — ) extraspecial
group isomorphism class. Furthermore, we have the period-
icity

GPi=GI+1P—1 (25)
The periodicities [(22)+25)] have long been known in the
study of Clifford algebras (see, for example, Porteous®® and
references therein); in the context of these finite groups, Sa-
lingaros® also noted them. It is perhaps useful to note that
these periodicities are by no means limited to Clifford alge-
bras or these extraspecial groups. In the context we are
working, they evidence a more general structure, the
Brauer-Wall group.>* For their application to Clifford alge-
bras, we mention the work of Lounesto.?’ Collecting the re-
sults of this section, we have the following classification.

Lemma 5: The group G " ~ " (4) associated with the al-
gebraC™ ~"is

(a)if n =2m, itis E,, , , when r — m=0,1 mod 4,
E, _,whenr— m=2,3 mod 4;

b)ifn=2m + 1,itis E,, . XC,, when r — m=1 mod 4,
E, XC,, whenr —m=3mod4,
E,oC, whenr —m=0,2mod 4.

Table I gives the group structure associated with a given
metric along with information about their representations,
which is the subject of the next section. We conclude this
section with an example.

Example: We determine the group structure of G*' as-
sociated with a metric (2) g; = diag. (+ + + + —). The
quadratic form (13) is (0,0,0,0,1). Upon decomposition this
gives

(0,0,0,0,1) = (0,0) (1,1,0) = (0,0) & (1,1} & (1),
which gives the group structure

G*'=DoQoC=E,oC.

IV. REPRESENTATIONS

In this section we shall study the representations®® of
G 74, The representations of degree greater than one are re-
presentations of the algebra C?9; this enables the possible
representations of the algebra—the gamma matrices—to be
quickly classified. We firstly classify the irreducible repre-
sentations of G and then describe their inductive construc-
tion, making contact with the work of the previous section.
After this we derive the conditions for a representation to be
either pure real or imaginary. The latter is of physical impor-
tance and will be used in the next section; it also will enable
us to describe generally the group G in terms of the orders of
its elements. We conclude this section by showing the group
G P is simply reducible, reflecting the underlying spin
group.

First we note that a representation of G can always be
taken to be unitary, because G is finite. Thus the representa-
tion matrix of g is either Hermitian or anti-Hermitian ac-
cording to whether g> = 1 or g = — 1. The number of lin-
ear or one-dimensional representations of G is given by

TABLE I The group G~ "= (I",...I,,, —UI'l=(—12=1lignl'}= —1j>r[T.I;] = —1,i#j,[I;,— 1] =1) in terms of its extraspecial
structure, and its representations. r,/, — means there exists a pure real, imaginary, or only mixed representation. E , are the two distinct extraspecial groups
of the appropriate order. C =C,. V'=C, X C,. EC means the central product of Eand C, E0c C.E, o V=E, XC,.

n 1 2 3 4 5 6 7 8 9 10 11
n—r
0 Vr E,r EC- E_- E_V- E_i ECi E,.r E. Vr E r EC-
1 Ci E ri E.Vr E,r EC- E_- E_V- E_i ECi E.r E.Vr
2 E_i ECi E, ni E Vr E.r EC- E_— E_V- E_i ECi
3 E_vV- E_i ECi E. ri E vr E.r EC- E_- E_V-
4 E_- E_V- E_; ECi E. ri E vr E, r EC-
5 EC- E - E_V- E_i ECi E ni E Vr
6 E.r EC- E_- E_V- E_| ECi
7 E Vr E, r EC- E_- E_V-
8 E,.r E_vr E.r EC-
9 ECi E.r E. Vr
10 E_i ECi
11 E_V-
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[G:G"] =2"~". This, together with the class equation (26)
determines completely the dimensions n,-of the vth irreduci-
ble representations:

Gl= 3 = (26)
conjugacy
classes v

Using the results of Sec. II, we have (a) for n = 2m (i.e.,
G extraspecial) there is one nonlinear irreducible representa-
tionofdegree 2™ ;and{bjforn =2m + 1[i.e,G=E° Z(G)]
there are two nonlinear irreducible representations of degree
",

Thus for even space-time dimensions there is only one
type of spinor, while for odd dimensions there are two dis-
tinct types. Because, for geZ (G'), g and — g are in the same
conjugacy class, the characters of g vanish for these nonlin-
ear representations: that is, they are represented by traceless
matrices. These results are expressed in the following
theorem (Dornhoff*®).

Theorem 6: Let G = E o C, k, where E is extraspecial of
order p?”*!. Then G has exactly the following irreducible
complex characters: (i) p*” * * ~ ! = [G:G '] linear characters;
and (i) p* — p* ! faithful irreducible linear characters y; of
degree p™, which vanish outside C,k and satisfy
Xilex =P"Ais whereA, is a faithful linear character of Z (G ).

Such a group, whose characters vanish outside of Z (G ),
is sometimes known as central. For even dimensions all the
gamma  matrices are traceless, apart from
()= —yi(—1)=2". In odd space-time dimensions,
y:(4 ) is nonzero and is either 4 2™ or + i2™, according to
whether Z (G ) is either C, X C, or C,. [Note: the representa-
tions of G = E o (C, X C,) = E X C, are just the direct pro-
duct of the representations of £ and C,.] This structure of the
representations reflects the isoclinism of the groups of fixed
dimension. Before describing the reality properties of the
irreducible representations of G, we comment on their con-
struction and relation to the previous section.

Given a group G™"~" we may embed this in either
Gr"+1-7or G"* !, corresponding to whether we add an
extra generating element that squares to — 1 or 1, respec-
tively: that is, adding a 1 or O to the quadratic form. Schema-
tically this is shown in Fig. 1. Two cases must now be distin-
guished between, according to whether n is even or odd.

Case 1: n even. Here we have only one representation D,
of G. In this we have D({A)=D(I')--D(I,) with
DAy =(~1)n+V2=r  We may mnow choose
D, (I, )= +D(4)or +iD{4 )accordingtowhether we
wish I'2 | = + 1 or( — 1). The choice of + corresponds
to the two inequivalent representations of G4, . The period-
icity modulo 4 is reflected in the choice of + D(4) or

+iD{4). If we choose +D{4) to go from G™*~" to
G+ 2=’ we must then choose +iD{4) to go from
G"*%"="t0 G"**"~". This is shown in Fig. 2.

Case 2: n odd. In going from G,,, ., t0 G,,,, , ,, We are

able to use the induced representation of G,,,, , in G,,,, . ,.

Gr,n—r 5 Gr+1,n~r

~ FIG. 1. Extensions of G ™" 7,
T grantlet
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LSS SN Gr+1,n--t Gr+2,n—r Gr+s,n-r
+ iD{A) =+ 3(4)
- DeC » DoQ ——————3 DoQoV

G

n-r=0 D

FIG. 2. Periodicities in adjoining elements to the representation G ™" =7, for

neven.

We have, if H<G and G = U Hx; for some {x;] a cross
X

section of G /H, that the matrix

D(xzgxz ')

Dixzgx, ‘)]
Dix,gxz ")

4)= [ Drag )

forms a representation of G, where D is a representation of H
and D {y) = 0 for yeH. In our case we have

a0=["8 ] e s62(Gune
and
A(F2“+2)=li()1 (1)}

according to whether I"3,, , , = + 1. This representation is
seen to be irreducible by Schur’s lemma, as the only matrices
which commute with all the elements of the group are multi-
ples of the identity. It is readily seen that the other possible
choices of 4 (I',,, .. ,) are equivalent to this. Denoting equiv-
alence by ~, then

P B S o S PO
+1 0 F1 0 Fi O +i 01
Within this representation

Al ,_..[ 0 D(Am“m]
S -3 {ZFRRY, R

with 7€C* suitably chosen. This procedure again has an al-
ternating choice of the 4 sign reflecting the modulo 4 peri-
odicity.

The connection between the possible representations
formed in these two cases is contained in the following
lemma, which may be proven straightforwardly.

Lemma 7: We have equivalent representations by (i)
first adjoining D*4,,, ,)=1and then 4 }{[,,, ,) = — 1,
and (ii) first adjoining D%*4,,,,)= —1 and then
A3, ,)=1.Thus the diagram in Fig. 3 is commutative,
giving equivalent representations for G™+ 21—+ 1

The constructions just given interpolate between the
usual representations of the gamma matrices inductively de-
fined for even space-time dimensions.” The procedure for
forming the representations clearly shows the modulo 4 peri-
odicity observed from the study of the associated quadratic
form.

We now discuss the reality properties of the representa-
tions of G ™" ~ ', which enables us to give a general classifica-

p(a)=1

Gr,Zn—r \ Gr+1,2n-r
b(a)= -1 \Az'(l‘zn+2)= -1
Gr,2n*r+1 Gr+1,2n—r+1
OSIRE

FIG. 3. Independence of the path, a representation is induced.
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tion of the groups G ”" ~ " in terms of the orders of their ele-
ments. For the complex irreducible character y; of a finite
group G, We have that

1’ lei=/i’i and  Sg(y;)=1,
={—1 ify,=yx and Sg(y,)=2,. (27)
0, if v, #x;

Here Si(y,) denotes the Schur index' of y; over R. The
representation D, corresponding to the character y;, is real if
and onlyif Sg(y,) = 1. [When Sg (y;) = — 1, we have asym-
plectic representation.] This leads to the Frobenius-Schur

theorem.?®
Theorem 8: Let G be a finite group and

16 = Y1,¥2s--Xs the irreducible complex characters. With
v{y;) defined in (27) we have (i) for any geG, let
tig) = |{xeG |x* = g}|, then

tig)= Z vixalyi(gh

i=1
and (ii) the number of elements of order 2 in G is

" h
2 () —1< 3 x(l) — 1.

Equality holds if and only if R is a splitting field for G.

Dornhoff'® uses this theorem to characterize extraspe-
cial two-groups in terms of their involutions. We generalize
this slightly to cover the possible G arising here: this extends
the explicit calculations of Salingaros® giving a general char-
acterization of G.

Corollary 9: (i) E,,, contains exactly 2*™ 4 2™ — 1
nontrivial involutions, and vy ) = 1 for the 2™-dimensional
representation.

(ii) E,, _ contains exactly 2> — 2™ — 1 nontrivial in-
volutions and v(y ) = — 1 for the 2™-dimensional represen-
tation.

(ili) G = E,, © C,, k>2, contains exactly
22m+k—1 _ 1 nontrivial involutions and v(y;) = 0 for the
2" -dimensional representations, i.e., they are complex.

Parts (i) and (ii) are an application of the Frobenius—
Schur theorem (see Ref. 18). Part (iii) comes from Theorem 6,
which says A, #£1,, as A, is faithful, and so the only real rep-
resentations are the one-dimensional ones. This is then used
in Theorem 7.

Corollary 9 enables us to classify the groups in terms of
the orders of their elements, as an element is either an involu-
tion or of order 4. The group G = E,, X C, has characters

which are the products of the characters of E,, and C,, and
so their reality depends solely on that of E,, . Table II sum-
marizes these properties of the group G: the reality of its rep-
resentations, and the orders of its elements.

We conclude this section by showing the group G is
simply reducible® for n = 2m. This reflects the underlying
spin group and enables one to calculate the 3j and 6j symbols
for these groups in terms of our finite group G (Braden® and
de Vries®!). A group is simply reducible if (i) every element of
G is equivalent to its inverse and (ii) the Kronecker product
of two irreducible representations of G contains each irredu-
cible representation no more than once. We have shown con-
dition (i) true for the case n = 2m in Sec. II; this means all the
characters are real and the representation is either integral or
half-integral. Condition (ii} is also called “multiplicity-free,”
and we now show this is the case for both # even and odd.

It is useful to label the one-dimensional representations
of G. A convenient choice is the following: if y; is the charac-
ter of (1,), then it is given by

x\FPN =rer4re)y=\r4-" (28)
Being in the commutator subgroup, the right-hand side is
+ 1. Here I'* is some element of a basis of gamma matrices,

say I"*""*. The right-hand side of (28) shows that if I"“/eI" 3,
it anticommutes with all those €4 different from y;. Thus

Xall%)= I (-
b

I)No. p's in A different from g,

xa(l?).

(29)

We see that (28) labels distinct representations as follows.
Suppose y,(8) = v4:(g), 8€G. Then I" ;' I',.€Z (G ). Now
for a one-dimensional representation, the center is trivial
and so I', = I',.. With definition (28) we have

X858 = x4-5(8) (30)

Consider now the tensor product of two irreducible rep-
resentations D ¥, D ™; call it D “><*. Then we have

DWxVg) =

>a,D “g), (31a)

a, Z Y*ghy™ gy "(g)- (31b)
lG =

When D ® is one of the 2™-dimensional representations of G,

(31b) is readily solved. Theorem 6 tells us the sum vanishes

outside of G'. The case when we have two one-dimensional

representations is aided by (30). Upon solving the 27 + 1

TABLE II. G = (1,a,b) has a nontrivial involutions and b elements of order 4. m > 0.

Type of the 2™
dimensional of

G (1,a,6) representations

E,, (1,22 4 2m — 1,22 — 2m) Real

E, _ (1,22™ — 2™ — 1,22 4+ 2™) Symplectic

E oC, (1,22m+1 —1,22m+1) Complex conjugate
pair

E,, XC, (1,221 g 2m+1 _ 1,2+ 1 __gmey Two real

E,_XC, (1,221 _am+1 _ 1 p2m+1 4 gmt]y Two symplectic
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(+ 2, for d odd) equations (31b) we find, using a straightfor-
ward notation,

(1)@ (1p)=(14-s), (32)
(27 @ (1,) =(27), (33)
2Me 2™ =3 (L) (34)

The sum in (34) is over all 2*" 4 for n = 2m; when
n =2m + 1 the 2™ * ! possible 4 are restricted by

Yall)= —7°x4(4), with y,.(4)=n2" (35)

The 2™-dimensional representation on the right-hand side of
(33) is the same as that on the left-hand side. Lastly (32)
reflects the orthogonality of the characters. In conclusion,
(32)-(34) show that the group G'is multiplicity-free. Thus G is
simply reducible when 7 is even, or in the odd case, when G
has a direct product structure C, X E,, | .

V. APPLICATIONS

One of the immediate uses of the classification scheme
developed is to describe the possible representations of the
Dirac matrices for a given metric. Using Tables I and II, we
see that the metric (— + + + ) admits a real representa-
tion; thus the symplectic representation of (+ — — —)
may be taken to be pure imaginary. With the former metric
the Dirac equation is

(@ +m)p=0. (36)

A real representation of the Dirac matrices enables the Ma-
jorana condition to be implemented. Had we considered the
metric( — + + + -+ + ) however, our tables show rather
that a pure imaginary representation exists. This means that
the Majorana condition can be implemented only for mass-
less particles for such a metric.

We have also, that for the even-dimensional space-time
with equal numbers of spacelike and timelike directions,
both pure real and imaginary representations exist. This fol-
lows from our analysis of G ™", which is obviously D, ©
D,o..oD,. From this we see that the group G>*° has a
representation in which all the gamma matrices are Hermi-
tian,*? half being real (symmetric) and the other half being
imaginary (antisymmetric).

The case of odd dimensions is a little different. Our
analysis tells us immediately the type of representation asso-
ciated with a given metric, but now there are two nontrivial
irreducible representations. Given a representation D (I';) of
I;, therepresentation resulting from D (I'; ) is inequivalent to
this. Similarly, the representation given by D *(I';) is some-
times equivalent to D (I";) and other times not: this reflects
whether the groupis £, X C, or E o C,, the latter having a
pair of complex conjugate representations. Other represen-
tations may be obtained from D (I';) of I';, by transposition,

D (r;), and Hermitian conjugation, D (I';). Table III, show-
ing conditions of equivalence of these representations, is
readily obtained by examining the properties of D (4 }, which
by Schur’s lemma is a scalar mulitiple of the identity. To
illustrate the odd-dimensional case, consider the metric
(+ — —). Table I shows this is associated with the group
E o Cand so has a pair of complex representations. The met-
ric (— + +) has a pure real representation and so
(+ — —)has a pure imaginary one; the other inequivalent
representation is here the complex conjugate of this. The
Majorana condition can be implemented here.

The Weyl condition reflects itself in the symplectic
structure associated with the group; when the dimension is
even we can decompose the attendant vector space into two
equal parts. This is clearly seen in the representation theory,
where A (I;) for 1 <i<n — 1 acts on two orthogonal sub-
spaces. We may now ask about applying both Weyl and Ma-
jorana restrictions together when this is possible, i.e., those
even-dimensional spaces which have either a pure, real, or
imaginary representation. Two cases arise. First, that where
the restrictions are equivalent. For instance ( — + + +)
has a real representation, as does { — + + ). The second
possibility arises when the reduced space has no pure repre-
sentation properties to be implemented. This case then yields
independent restrictions. For example, the ten-dimensional
space whose metric has one minus has a real representation,
while the restricted nine-dimensional space with one minus
has an imaginary representation. These different representa-
tion properties lead to separate and distinct restrictions. For
a Lorentz signature, this gives the usual result of a Weyl-
Majorana restriction holding for 7 = 2 (modulo 8).**> Such
results are of use in supersymmetry today.>*

One final application comes from Table II, which char-
acterizes the orders of the group elements. The unitarity of
any representations means D '(I";) = + D(I';) according to
whether I'? = 4+ 1. Table Il tellsushowmany D' (g) = D (g)
[and similarly D (g) = — D (g)]; the number is just the num-
ber of elements of order 2. If we have a pure real (imaginary)
representation, then this is just the number of symmetric
(antisymmetric) matrices. The number of symmetric matri-
ces of degree 2 is obviously 2*(2” — 1)/2 + 2" = 4[2* 4+ 2"]
which is half that given in the table. The factor of two comes
because D (I';) and — D (I";) count as separate elements in
the group. Similar applications of Table II tell us the number
of symmetric and antisymmetric matrices in the chosen rep-
resentation. This connects the periodic group structure with
the periodicities observed in these symmetry properties of
the representation.>®

VI. CONCLUSIONS

A new and direct method of classification of the finite
groups associated with a Clifford algebra has been present-

TABLE III. Equivalence among representations of G "~ " for n odd. D (I'";) and — D ([I';}) are always inequivalent.

rodd reven
n=4k+1 D(I,),DMT)D(T,),DT) D(T)), — DI)D(I), — DY)
n=4k+3 D(T),— D™I ), — D)D) D(T)\,D¥I), —D(I),— DY)
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ed, and some of their general properties described. This
group is useful in examining the representation properties of
gamma matrices, and so the behavior of spinors in spaces of
arbitrary dimension and signature. The classification high-
lights the periodic properties observed and provides new
characterizations of the representations and group involved.
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We study the Hamiltonians for nonrelativistic quantum mechanics in one dimension, in terms of
energy forms §|df/dx|* dx + §| f|* d (s — v), where u and v are positive, not necessarily finite
measures on the real line. We cover, besides regular potentials, cases of very singular interactions
(e.g., a particle interacting with an infinite number of fixed particles by ““delta function potentials”
of arbitrary strengths). We give conditions for lower semiboundedness and closability of the above
energy forms, which are sufficient and, for certain classes of potentials (e.g., u — v a signed
measure), also necessary. In contrast to the results in other approaches, no regularity conditions
and no restrictions on the growth of the measures z and v at infinity are needed.

1. INTRODUCTION

In this paper we discuss self-adjointness and lower se-
miboundedness of Hamiltonians, which are formally given
by — (d?*/dx?) + u, where u is a (neither necessarily finite
nor necessarily positive) Radon measure on R. Such Hamil-
tonians have been introduced in the physical literature for
the description of singular interactions, e.g., point interac-
tions (the case 2 a sum of delta functions), and in problems of
solid state physics, nuclear physics, and electromagnetism
(see, e.g., the reference given in Ref. 1; see also, e.g., Refs. 2-
8). There are various mathematical definitions of — (d?/
dx?) + . (See Refs. 2, 3, 6, and 9-11.)

If the energy form'?

L )2 e + f | £ et

is lower semibounded (L.s.b.) and closable, the Hamiltonian
— (d%/dx?) + p can be defined as the self-adjoint operator in
L *(R,dx) uniquely associated with this form, for this ap-
proach to self-adjointness brings into question previous
works (see, e.g., Refs. 11,13). Thus the question arises, when
is the above energy form l.s.b. and closable. Both properties
are also important because lower semiboundedness is an
expression of stability for the physical system, and closabi-
lity is necessary for any determination of the dynamics.
First, we suppose that u is a positive (Radon) measure
on R. Then the energy form

L |f e dx + f | £00? duatx)

is closed if u is regular [ie, du=Vdx, for some
VelL fw(R,dx)] of if u is finite, since in the former case the
form

fn | £ dator) = j | £V el

is closed, and in the latter case fg | f(x)|* du(x) is infinitesi-
mally form-bounded with respect to fg | f'(x)|? dx (see Ref.
11). But in general, if g is neither a finite nor regular Radon
measure on R, the form fy | f(x)|? du(x) is neither closed nor
bounded with respect to fg | £'(x)|* dx. We show that even in
this case the form
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L | F0 dx + Llf(x)lzdﬂ(x)

is closed. (See Theorem 1(a).) Thus, for arbitrary positive
Radon measures ¢ on R, we can define a self-adjoint opera-
tor — (d ?/dx?) + u. Moreover, we show that monotone con-
vergence from below of positive measures 4,, implies conver-
gence of the Hamiltonians — (d 2/dx?)} + u,, in the strong
resolvent sense. (See Theorem 1(b).)

Next, we consider perturbations of the free Hamilton-
ian by arbitrary, not necessarily positive, Radon measures. If
p — v is a signed Radon measure, or if u, v are positive Ra-
don measures and g is finite on an e-neighborhood of the
support of v, we give a necessary and sufficient condition in
order that the energy form

[170as+ [ 1rrd(n—vid

is L.s.b. and closed. (See Theorem 3(b).)
For arbitrary positive Radon measures u,v on R, we
show that the energy form

[ verdss [ 170 d—vim
is 1.s.b. and closed if R can be written as the disjoint union of

intervals I, so that inf |1, | >0and sup I, ) < o, where | |
neN neN

means Lebesgue measure, (See Theorem 3(a).) Thus, to show
that

[rwr+ [ verae -
R R

is 1.s.b., only a local estimate of v is needed. Under the stron-
ger assumption of regular measures u,v a similar result (in
the multidimensional case) has been given in Ref. 14.

Let u,v be positive Radon measures so that support u
nsupport v = &. Then the Hamiltonian — (d 2/dx? — v is
not Ls.b. if, for some compact set K, v({y + x|y € K }}—> 0 as
X— + oo, and one might expect that — (d%/dx?) + u — vis
not ls.b., too. But we shall see that even in this case the
operator — (d %/dx?) 4+ u — v can be Ls.b. and self-adjoint,
i.e., the potentials £ and v can “cancel out” each other
though their supports are disjoint. (See Theorem 4 and ex-
ample 2.)
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In Theorem 2 we give an explicit description of the Ha-
miltonian — (d */dx?) + u, associated with the energy form

[ vwrast [ vwr du

The results of this paper extend some of the resuits in
Ref. 3. We refer to the latter work for some further examples
and discussions. All results in this paper are formulated for
Hamiltonians defined in L *R,dx); however, they extend
easily to the case where R is replaced by any open subset D of
R with the cone property (i.e., such that there is an € > 0, so
that for any x € D, [x — €,x]C D or [x,x + €]C D), and Dir-
ichlet boundary conditions are chosen.

Il. THE SCOPE OF THE HAMILTONIAN — (d 2/dx?)
+u—v
Let 4 be a positive Radon measure on R. We define a
quadratic form P, with domain D (P, ) on L *R,dx) by
D(P,) = H>'R)nL *(R,du),
with H >!(R) the space of L * functions with (generalized) L 2
derivatives, and"®

P,(fg)= Lf*(x)g(x)d/t(x),

for all ,ge D(P,).
The energy form E, isdefinedby E, = E, + P, , where

D(E) = H*'(R),
Eqfg)= f Freixlg'x)dx, fig €D (Ey).

It is well known that the free (kinetic) energy form E, is
closed.

If the Radon measure u is finite, the quadratic form P,
is infinitesimally form-bounded with respect to E, (in the
terminology of Ref. 6) since, by Sobolev’s inequality, for any
a > 0, there is a number b so that

| FI. <aBol £F) + b j )2 d, 1)

for any f€ H*'(R). Thus, by the Kato-Lax-Milgram-Nel-
son (KLMN) theorem (see Ref. 6), E,, is closed.

If 1 is an arbitrary positive Radon measure on R, we can
choose an increasing sequence {1, } of finite positive Radon
measures on R, so that a function f'is uz-square integrable if
and only if it is i, -square integrable for any n € N, and

gggL [f(x)|* dit, (%) < oo

For example, set 1, = yK,,- 4, where y means characteris-
tic function and { K, } is a sequence of compact sets increas-
ing to R). Then E,, is the monotone limit form of the forms
E_ ,ie.,

D(E,)={fe 0 DIE,)IswpE, (f.f) <),
E,(fg)= lim E, (fg) fgeDIE,)

(The limits exist by polarization.)
Thus, by a theorem of Kato'* and Simon'® on mono-
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tone sequences of positive closed quadratic forms, E, is
closed. It is easily seen that the space C(R) of infinitely
differentiable functions of compact support is a core of E,, .
Thus we have proven part (a) of the following theorem. Part
{b} of Theorem 1 shows that monotone convergence from
below of positive measure-valued potentials i, implies con-
vergence (in the strong resolvent sense) of the Hamiltonians
—(d¥dx}) +u,.

Theorem 1:

(a) Let 1 be a positive Radon measure on R. Then the
energy from E,, defined by

D(E,) = H*'(RinL *(R.du),

E,(fg) = Lf’*(x)g’(x)dx

n L fexigx)dutx), fgeDIE,),

is closed on the Hilbert space L *(R,dx), and C $(R) is a core
of this form.

(b) Let {u, ] be an increasing sequence of positive Ra-
don measures on R, so that Sup p, (B) = u(B) for any Borel

set B. Let H, ,H, be the positive self-adjoint operators in
L *(R,dx) uniquely associated with the energy forms E B
Then H, —H,,, n— « in the strong resolvent sense.

Proof of (b): By hypothesis, E,, is the monotone limit
form of the E,, . Thus (b) follows from Theorem 3.1 in Ref.
16. a

Let u,v be positive Radon measures on R. If the qua-
dratic form E, — P, is Ls.b. and closable on L *R,dx) the
energy form E,, _,, is defined as the closure of E, — P,. By
the definition of E, — P, and E, _,, we have

E, .(fg)= J Felxig (x)dx

+ [ eicltaid b — i), )

for any fge D(E, — P,). However, in general there are
functions fin the domain of D (E, _, ) which are neither u-
square integrable nor v-square integrable. (See example 2
below.) Thus, in general there are functions f,ge D(E,, _,)
for which the right-hand side of (2) is not defined. But we
shall see that (2) holds whenever for g has compact support.
(See the following, Lemma 1.) As an immediate consequence
of this lemma, we shall prove that the 1.s.b. self-adjoint oper-
ator H,, _,, uniquely associated with the energy formE,, _,,
is givenby H, _, = — (d?/dx?) + u — v [in the sense that,
acting on a function f, we have H,_, f= —(d?%
dx?)f + (u — v}f; with the derivative, and (4 — v)f to be un-
derstood in the distributional sense].

Lemma I: Let u,v be positive Radon measures on R so
that the quadratic form E, — P, is 1.s.b. and closable on
L*R,dx) and let E, , be the closure of E, —P,. Let
feD(E,_,)and ge C§(R). Then

E,_.(fe)= L Fe(xg )
+ fR Fo(xgtold (e — v)x)
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Proof: By the definition of E, _,, we can choose a se-
quence {f,} in the domain of E, —P,, so that
E,_fi —fifs =10, n—w, and f,—f, n—ow in
L?(R,dx). Subtracting a subsequence if necessary, we may
assume that { f, } converges pointwise Lebesgue, a.e. on R.
Let D be a nonempty open bounded interval on R with sup-
port gC D, so that { £, ] converges pointwise on the bound-
ary of D.

|f 2 (x)|* dx = . Then, by Sobo-

lev’s inequality, and since the Radon measures x,v are finite
on the bounded interval D and the sequence { | £, (x)|* dx}
is bounded, we have

sup ([ il ax+ [ 1AwEdls =) == 0

Let f, be the continuous function, which equals f, on R\D
and is affine linear on D. If any of the sequences { f, (inf D)},

[f,,(supD)}, {IRV‘n(x”Z dx}’ and {E[L—V(f;l ’fn)} are
bounded and (3) holds, it is straightforward to show that

sup Snlfubol?dx <o and  inf B, ,(Fnfu)= — e,
which contradicts the fact that E, _, is .s.b.

Suppose that sup o

Thus we have proven that sup §,| f,(x)|’dx < . Thus
€N

the sequence { f, | D} of the ;estrictions of the £, on D is
bounded in the Hilbert space (H >'(D),{ , ),) with'inner pro-
duct

(hh),: = JD h'*(x)k (x)dx + Lh*(x)i: (x)dx.

Thus, subtracting a subsequence if necessary, we may as-
sumethat { £, | D} converges weaklyin(H >'(D),( , ),)(see
Ref. 17). This implies that there is a subsequence { f,,j} of
{f,} so that the sequence {h, D}, with
hni=(1/mZ_, f,,j for any m € N, converges strongly in
(H*YD),( , )s) (see Ref. 17). Since 4,, | D—f | D, m—w
strongly in L *(D,dx), we get h,,, | D—f | D, m— co strongly
in (H>'(D),( , );). By Sobolev’s inequality, this implies

§gg|hm {x) — f(x)|—0, m—> 0. Thus
E,_,(fg)= lim E,_,(h,g

= lim ( h ., *(x)g'(x)dx

m—oo

+ Lhm *(x)g(x)d ( — V)(x))
- fD Fre{xlg

4 Lf*(X)g(x)d ( — V)

The last but one step follows from ge D (E, — P,), A,
€ D(E, — P, ) for any m € N and support gCD. N
Theorem 2: Let u,v be positive Radon measures on R so
that the quadratic form E, — P, is Ls.b. and closable on
L*R,dx)andletE, _, betheclosureof E, — P,.LetH, _,
be the 1.s.b. self-adjoint operator in L *(R,dx) uniquely asso-
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ciated with the energy form E, _ . Then
D(H,u—v): {feD(Ep—v)l( _f

+ (4 — ¥/ )aim € LRydx)},
where ( —f" + (4 — v}f)aise Mmeans the distributions

g f S — " (x))dx

+ Lft(x)g(x)d(/t —V)ix), g€ C3(R),
and

H, _,f=(~f"+#—"Wa
forany fe D(H,, _, ).
Proof: Let fe D(E,,_,). Lemma 1 yields

E._.(fg)= f (—f" + (4= W el gt dx,  (4)

for any geCg(R). Suppose that in addition
(=f" + (# = YWaix € L*R,dx). Then (4) holds for any
geD(E, ) sinceCy(R)isacoreof E, _, (asiseasily seen
by the Theorem 1(a)). This implies fe D(H,_,) and

_J=(=F"+ (1 — ¥ )ais: (see Ref. 13). Conversely,
let f €D(H,_,) Thenthereisafunction fe L*R,dx)sothat

E, .fe)= f Felxlgteldr,

foranyge D(E, _,)(see Ref. 13). By (4) and since C 5’(R) is
dense in L 2(R,dx), this implies f= ( —f " + (& — YW )aist -

Remark: Hamilton operators, formally given by a per-
turbation of the free Hamiltonian H,, by certain distribution-
valued potentials, have also been discussed by methods of
Dirichlet forms (in the multidimensional case) as follows.
(See, e.g., Refs. 1,3, and 18).Let H'®! be the self-adjoint oper-
ator in L %(R" @ ? dx) uniquely associated with the Dirichlet
form

EWAS) = | lerad fix)fp ek

on L }(R",p? dx). Then we havepH'®)p ~' = H,, + V¥, with
Y= Atp(x)( < i)‘

(x) <1 ox?

In particular, results on closability of these Dirichlet forms
E'® have been obtained. For example, in Ref. 3 we proved
that the Dirichlet form E is closable on L *(R",p ? dx) if
there is a closed set NV of Lebesgue measure zero, so that for
any compact set K CR” \ &V, there is a strict positive number
r{K') with @(x)>r(K ) on K. This result has recently been ex-
tended in Ref. 19 (to which we refer also for a survey of
known criteria for closability).

Although in the one-dimensional case a necessary and
sufficient condition is known in order that a Dirichlet form
E') s closable on L (R, 2 dx) (see Refs. 20 and 21) and the
correspondence between Dirichlet forms E®’ on
L *R,p? dx)and energy forms E,, on L *(R,dx)is wellknown,
too [namely, u(x) = ¢ *(x)/@ (x)], in general it is difficult to
decide by methods of Dirichlet forms whether, given mea-
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sures u and v, the quadratic form E, — P, is closable on
L ?(R,dx), since one has to find a solution @ of the differential
equation { # — v)(x) = @ "(x)/@ (x). In general, this equation
cannot be solved exactly. Thus, it seems to be desirable to
have criteria in order that the quadratic form E, — P, is
1.s.b. and closable on L *(R,dx), which only involve the mea-
sures 1 and v. Such criteria will be given in the following
section.

lil. CLOSABILITY AND LOWER SEMIBOUNDEDNESS
OF ENERGY FORMS

Suppose that the following condition is satisfied.
(A) There is a sequence {I,, } of pairwise disjoint inter-

vals, so that R= ul, sup vI,)< «, and nirelgll,,|>0

(where| | means Lebesgue measure). Then, by Sobolev’s ine-
quality, foranya>0andneN

supl flll’<a [ |7+ [ oafas (5
xel, 1, I,
for any f € H*'(R) where the number b can be chosen inde-

pendent of n, since nireltl;|1,, | > 0. By (5),
[ 17601 vt < g 1, B £

VR

Thus, the quadratic form P, is infinitesimally form-bounded
with respect to the free energy form E,. Thus, the KLMN
theorem and Theorem 1(a) yield part (a) of the following
theorem. Part {b) follows from a simple computation.

Theorem 3: Let u,v be positive Radon measures on R.

(a) Suppose that condition (A) holds. Then the quadratic
form E, — P, is l.s.b. and closed on L *(R,dx).

(b) Suppose that 4 — v is a signed Radon measure or
that u({x|d (x,support v) < €}) < 0, for some € >0 (where d
means distance). Let {I, } be a sequence of pairwise disjoint

intervals so that R= u [, inf|7,|>0, and sup|/, | < co.
Then the quadratic form E, — P, on L *(R,dx)is1.s.b. if and

only ifglelg Al,) < .

Remark: As mentioned in the Introduction, this result
implies that — (d 2/dx?) + u — v, defined by the method of
quadratic forms as the operator uniquely associated with the
closed form E, — P, , is L.s.b. and self-adjoint, whenever the
assumption (A), which only involves a local estimate for v, is
satisfied. This extends a result of Ref. 14 to the case of mea-
sure valued potentials.

As an application of Theorems 2 and 3, we give the
following example, which extends a result of Ref. 5 on per-
turbations of the free Hamiltonian by infinite sums of delta
functions to the case of strengths of both signs and not re-
stricted to be bounded.

Example 1: Let {x,}, {m, } be sequences in R, so that
for some €>0, |x, — x,, |>€, if n#m. Let

/‘t(x) = Z m, 6(x —Xn ))

m,>0
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vix)= Y m, 8x—x,),

My <0
where 6 means delta function.

By Theorem 3, the quadratic form E, — P, is Ls.b. if
and only if "irelfl; m, > — co. In this case E, — P, is closed
on L %R,dx) (Theorem 3) and the energy form E,_,=E,
— P, is given by

DE, ,)= [feH“um

S ml s )< o),
E,_.(fe)= f Fx(xlg x)dx

+ 3 m, folz, ),

fgeD(E,_,).
Letfe D(E, _,). By Theorem 2, fe D (H, _,)if and only if
the distribution

g | ro6l~g"tw)a
R
+ Zl m, f4x,)8x,), geCR),
isin L *(R,dx). It is straightforward to see that this is equiva-
lent to
S R\{x,|neN} e H*}R\{x,|n eN}),

and f'(x, +)—f'x, —)=m, flx,) for any n € N. Thus,
we have an explicit description of the functions in the do-
main of the Hamiltonian

d2 o
T2 + "Zl m,8(—x,),

by boundary conditions at the singular points x,, . Moreover,
by Theorem 2,

Hooof=(=1"+ 3 m, J )0 = %
Thus, H, _, f= — (/1 R\[x,|n € R})"

We shall now prove a corresponding result under a con-
dition different from (A), which involves both x and v,but
allows, in contrast to assumption (A) of the preceding
theorem, for arbitrary growth of v at infinity.

Let I be a bounded interval on R. Let f€ H >'(R). Sup-
posethatforsomenumberr > Owehaveu(I) — v(I)> — r|I |.
Then we have the elementary estimates

[ 1rwiate -
>(ull) — AL inf] £ ()2
+wI)((inf| £1x)|)* — (sup| £(x)|)")
>—r | Ve ax - 2un) [ 1 lasi .
>— rJ; f(x)|? dx — 2T )| |}/?

< ([ rwras) .. 6
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The last step follows from Hélder’s inequality. Sobolev’s ine-
quality and (6) yield that for any a >0 there is a number &
independent of fand I, so that

IR

<r [ e s + (oo 71)

+b [ 10 dx )2 M osuplar ),

if |l ) — I)|<r|T|. (7)
Suppose now that there is a sequence {I,, } of pairwise
disjoint bounded intervals and a number 7, so that

RznleJNI"’ LLL(I")—V(I,,)I<"II"',
for any n € N and
> L2 sup( p(I, I, ) < .

n=1

We define a quadratic form P, _, on L *(R,dx) by
D(P,_,)=H™(R),

P_fg= 3

n=14JI,

Xd(:u - V)(x)’ f’geD(Py—-v)‘

Let 7z be a positive Radon measure on R. By (7), P, _, is
infinitesimally form-bounded with respect to E;. Thus, by
the KLMN theorem and Theorem 1(a), E; + P, _, isls.b.
and closed on L *(R,dx) and C¢’(R)isa core of E; + P, _,,.
This implies that E; + P, _, is the closure of the quadratic
formE;,, —P, (ie,E;+P, ,=E;, , ,)sinceE; ,
~P,CE; +P,_, and C7(R)JCD(E; ., —P,). Hence
we are lead to the following theorem.

Theorem 4: Let u,v be positive Radon measures on R.
Suppose the following condition holds.

(B) There is a sequence {I, } of pairwise disjoint inter-
vals and a number 7, so that R = ngNI,,, 32| |1Y)

n=1
<, and u(l,) —vl,)> —rl,), for any n € N. Then the
quadratic form E, — P, is 1.s.b. and closable on L }R,dx)
and its closure E,, _, is given by

Srx)glx)

DE,_.)
~ {renm| 3 | | vk dw - <o,
E,_.(f8
~Edfe+ 3 [ Fetxgled (1 = i)
fgeDIE,_,)

Moreover, if 4 ,1¢, are positive Radon measures on R, so that
B= oy + pp ) — L)

<r|l,|, foranyneN, (8)

and
Z lul(ln)lln ,l/2< o0,
n=1

then D(E, _,)=D(E, ).
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Proof: By the considerations preceding the statement of
the theorem, we have only to show that there are positive
Radon measures 1,4, on R which satisfy (8). (Take I = u,
and i = p, in the above arguments.) For this it is sufficient to
define, forxe 1,

(x) _ [‘V(I,, )/,u(In)]#(x), lfV(In) <,u'(1n )’
P = ), if V2, )>p(L,,),
and p, = Bl -

Remark: 1t is possible that the quadratic form E, — P,
is 1.s.b. and closable but not closed, and the domain of the
closure contains functions which are neither in L *(R,du) nor
in L *(R,dv). Thus the definition of E, _,, through the infi-
nite sum in Theorem 4, is actually necessary, since for such
functions fg |f(x)|? d( & — v)(x)is not defined. Moreover, we
remark that E, — P, can be L.s.b. and closable on L *(R,dx)
even in the case where E,— P, is not ls.b. and
support x4 U support v = &, i.e., the measures u and v can
“cancel out” each other even if their supports are disjoint.
The following example will illustrate the facts mentioned in
this remark.

Example 2: Let {¢, } be a sequence in the open interval
(0,1)so that =*_ , €)?a" < o, where a > 1 is an arbitrary real
number. Let

)= 3 a" 8 —n),

n=1
vix) = a*8x —n—e¢,)
n=1
The assumption (B) of Theorem 4 and formula (8) are obvi-
ously satisfied if we choose I, = ( — o0,1), I,, = [n,n + €, ],
and I,,,, =(n+¢€,,n+1) for any neN, u, =u, and
#2 = 0. Thus, by Theorem 4, the quadratic form E, — P, is
Ls.b. and closable on L *(R,dx) and its closure E,, _,, is given

by
DE,_,)=H*R)

E,_.(fg)= f Fpngdx+ 3 @l foinkgln)

n=1
_'f*(” + 6n)g(” +€n)]! f;gED(Ep—v)'
The function f(x) = a~ "2 isin D(E, _,) = H*'(R), but

INCRTE INCREEES

and thus féD (E, — P, )sothat, in particular, E, — P, is not
closed. In this example, E, — P, is not 1.s.b., and by defini-
tion the supports of » and v are disjoint. Hence all points
made above are verified. The Hamiltonian
d 2 0 n
— S5t Y al -~ —n—c,)

n=1
is of the same class as the Hamiltonians discussed in more
detail in example 1.
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Analytical expressions for the sum Z7_

oln +A)L(n+ 1 (n+24)]°

X C*x)C#(y)C%(2)D % (u) are given, where C/ and D are ultraspherical polynomials and
functions of the second kind, respectively, on the sets { (x|,] y|,|z| <1, 4> 1} and

fxls) plslzls ) < 1)

I. INTRODUCTION

Integrals and sums of products of classical orthogonal
polynomials have been a matter of curiosity for a long time
(see the Bateman Manuscript Project’ for an impressive list
of integrals and Hansen? for a similar list of sums). Some of
these formulas have proved very useful in physical applica-
tions. For example, the Clebsch—-Gordan coefficients with
zero magnetic numbers have the following representation®*

1
P (x)

(Ck0m0)2 = 2t
2 -1

where P, (x) is the Legendre polynomial of degree k. By sym-
metry of the integral (1.1) and the orthogonality properties of
these polynomials, it is clear that the integral vanishes if
k + m + n is odd or the triangle inequality

n—m|<k<n+m

P, (x)P, (x) dx, (1.1)

(1.2)

is not satisfied.

In trying to classify the various fluctuation modes in an
investigation of the stability properties of some special solu-
tions of the O (n) nonlinear o model, Din and Zakrzewski®
found that the classification depended crucially on the van-
ishing of the sum

n+m

2k+1
;—ml k{k+1)— m(m + 1)
Din* showed that this vanishing is equivalent to that of

[ ouwp.np, i a

when either Xk +m + n is even or kK +m + n is odd and
|n — m| <k <n + m, Q,(x) being the Legendre function of
the second kind® on the branch cut — 1 <x < 1. Itis interest-
ing to note that the integrals in (1.1) and (1.3) vanish in com-
plementary sets. The same feature holds for the well-known
generalization’ of (1.1),
1
Cix)Cr(x)Crix)(l —

-1

k Omo0 )2

(1.3)

x2)/1 — 172 dx

_TAria+4) Al rAmid)_al22)
FA+1) s—kMls—mls—nlA+1),’

where k + m + n = 2siseven, and [n — m|<k<n + m, and
zero otherwise. The corresponding generalization of (1.3)
has recently been found by Askey, Koornwinder, and Rah-
man,® which states that the integral

(1.4)

f Dix)CHX)CHx)N1 — x¥)* 1 dx (1.5)
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vanishes when (i) K +m + n is even, and (ii) k + m +n is
oddand [n — m| <k <n + m. Here C#(x) and D #(x) are the
ultraspherical polynomials and ultraspherical functions of
the second kind defined, respectively, by®

EAA)A
Cﬁ(cos0)=j;0£—ﬂ—:jli—_)—';i’-c

u g 2L+ Y04),
A+ 1)k

2 (1=A4)(Dey,

Z JA+ Dy

xsin(k +2j+ 1), 0<8<«m,

os (k — 2/)0

ReA>0,
(1.6)

and

w p 2L 4424,
A+ 1) @3k!

2 (1 =4 )1y,

; JA+ Dy

xXcostk +2/+1)8, 0<b6<m,

D%(cos @) =sin'~

ReAd>0.
(1.7)

The shifted factorial (@), is defined by {a), = 1, k =0, and
(@) =ala+ 1)ala+k—1),k=12,...

The duals of these results are equally interesting. Dou-
gall’ showed that

Z n+ )[ I"(n
XCﬁ(cosﬂ)C;‘(cos 7
_ misinasinBsiny)' "> (16D )"

] C#(cos @)

, 1.8
22 r4a) (1.8)
where
16D = sin ath +y sin B+y—a
2 2
xsin”+‘;‘ﬁsin“+f‘7’, (1.9)

provided O<a, B, y<m, O0<ReA, and a triangle can be
drawn with sides , 5, ¥, assuming that the sum of any two of
them is less than or equal to 7. The value of the infinite sum
in (1.8) is zero if this triangle condition is not satisfied. On the
other hand, the dual of (1.5) states that'®
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> n+1) . i i _ 2+
"Zo(n +'1)1.,(n +M)Dn(ma)cn (cosﬁ)Cn(cosy) -

where 0 <a, B, ¥ <. Convergence of the infinite series on
the left hand side of (1.10) requires that 0 < Re A < 1.

Generalizations of these results for Jacobi polynomials
P'*#)(x) and Jacobi functions of the second kind Q {*#)(x) (see
Ref. 11) would seem to be a natural thing to try. A general-
ization of (1.4) was given by Rahman'? and of (1.8) by Gasp-
er.”® Recently van Haeringen'*! considered a family of infi-
nite sums of the form

go (27 + WPEXP A p)P1 (20" u),

where PS and Q% are Legendre functions of the first and
second kinds, respectively, defined by*¢

Pilz)= I 1_ 1) (?—L ;)"/2

XoF(—vyv+ Kl—pwi—12), |1 —2/2|<],
(1.12)

(1.11)

Q[‘.’t(z):_e’lﬂ'ﬂ 2—v—117.1/2 F(V+ﬂ + 1)
rv+3j

><'z-—v—u—l(22__ 1);1/2

XzFl(V+”+l ,v+”+2 ;V+%;Z"),Iél>1.

2 2
(1.13)
For example, van Haeringen'® showed that
S (2n + 1)P, (x)P,(y)P,(2)Q,(u)
n=0
=WV, F(03L,TW 2, (1.14)

where

W=x>+y*+22 4+ u? — 2xyzu — 2,

T=41—x%1 -1 =21 — ),
provided — 1<x, y, z<1, and u is outside an ellipse with
arbitrary axes and foci at 4 1. He restricted all his calcula-
tions in Ref. 15 to the region where Re u is positive and
sufficiently large in order to avoid difficulties arising from
the branch cuts. Even though van Haeringen’s work seems
to be motivated by the unitarity relation for the Coulomb T’
matrix, it should be clear from (1.10) that very interesting
things can happen when |u| < 1. Of course, (1.13)is not valid
when |z| < 1, but there are known prescriptions'® for com-
puting @%(x + i0), — 1 <x < 1; thatis, the values of Q4 (z) as
z approaches the cut from above or below.

Our principal objective in this paper is to compute the
sum

I'(n

o0 +1 2 2
"ZO (n+4) [m] D#(cos @)C%(cos B)

X C%(cos ¥)C%(cos §)

=J,(a,B:7,0), say. (1.15)
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sin 74

)

0, ifl8 —y| <a<B + y<m,

(—16D)~%, ffa<|B—~vy|ormr<B +y<2m,
anda+ 8 +y<2m {1.10)
—(—16D)~% ifa>B +7,

-
This will give an evaluation of the sum in (1.14)for A = } and
for the case — 1 <u < 1. However, in Sec. II we shall also
compute the sum

i I'in+1) : 2 2 i A
3 ) [————r(n - u)]Dn(u)Cn(X)C,.(y)Cn(Z)

=K, (x, y,z,u), say, (1.16)

for — 1<x,y,z<1and 1 < |u|. This will give a direct general-
ization of van Haeringen’s sum (1.14).

The ultraspherical functions C%(z) and D%(z) are de-
fined in different ways in different regions. One of their re-
presentations on the branch cut — 1 <x <1 is given in (1.6)
and (1.7). However, for complex z with Im z#0, Durand!’
defines them as follows:

Chg) = I'in+21)
riyrn+1)
X\ — nn 4+ 244 + (1 — 2)/2)
—ol-24 I'(n+24) A —1/24—1/2)
BT AT Ay e
(1.17)
Df;(z):e"’" r(”+u) (22)—;1—2/1

FArn+i1+1)
XF((n/2) + An + 1/2) + Ain + 4 + 1,273

=e""’121—2/1 Lin+24) QU— V=172,
Jr T +A+) =" ’

{1.18)
where P*#)(z) and Q'*#)(z) are Jacobi polynomials and Ja-
cobi functions of the second kind defined, respectively, by’

F'n+a+1)
Frn+)a+1)
X Fy(—nn+a+ B+ La+ 11 —-2)2),
(1.19)

PPz) =

2n+a+ﬂr(n+a+ l)r(n+ﬁ+ 1)
rRen+a+B+2)

X(z—1)"""e"Yz 4 1)~F
XFin+1ln+a+1;
2n+a+ B+ 22/(1—2).

iTA

Q') =

(1.20)

Durand introduces the phase factor ™ in the definition of
D?*(z)sothat D% and C# satisfy the same recurrence relation
inA (see Ref. 18). The ultraspherical functions for real argu-
ment x on the cut — 1 <x < 1 are then defined by

CH(x) = D*(x + i0) + e ~2™D*(x — i0)

=Cix +i0), —1<x<], (1.21)
Df;(x) = — in;(x + i0) + ie_z"“Dﬁ(x — i0),

—l<x<l. (1.22)
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It requires a bit of manipulation to reduce (1.21) and
(1.22) to (1.6) and (1.7), respectively, but the work is fairly
straightforward, based on some quadratic transformation
properties of the Gaussian hypergeometric function ,F, (see
Ref. 16).

Il. EVALUATION OF K, (x, y,z,u)
By a formula due to Feldheim,
& 2nt+a+B+ I [T'n+at+f+ 1)]2
im0 I'in+a+1) Frn+pB+1)
X P32 x)P 32 p)Q 7P u)
_ 2a+ﬁ]“(a +B8+1) u+ 1)—0—3—1

19.20 we have

rg+1)
xEfa+B+1a+ 18+ e+
AW+  2Al+w)
where
F4(a’b;cyc,;x, y)
© @ b
_ 5§ Bnralbhnrn 22

minlc,. (),

m=0n=0

is an Appell function.'® The double series on the right of (2.1)
converges if
' (1+x)1+y) | 4 ' (1 —x)(1—y)
2(1 + u) 2(1 + u)
which we shall assume to hold. For the sake of simplicity let
us assume u > 1; this will guarantee the convergence of the
infinite series on either side of (2.1) for — 1<x, y<1.

The parameters of the F, function in (2.1) are so related
that it can be transformed into a ,F; by a formula due to
Bailey*!

Fla+B+la+18+1a+1;
—s/(1—s){l—¢),—t/(1 —s)1 —12))

=~ (=er Ao+ p+ lat 15+ 5 E20),
—s
(2.4)
Furthermore, denoting v = s(t — 1)/(1 — s) and using
the quadratic transformation formula'®
Filanazl —a; + av)
e +1 4p
=(1+v) (ﬂ,—q‘——;l —a+a ;—-—),
( + ) 2'Fl2 2 2 l(1+v)2
(2.5)
one can show after some tedious but straightforward calcu-
lations that

172

<1, (2.3)

 2n+a+ B+ 1)l [T(n +a+B+1) ]ZP(’:z,ﬁ)(x)sz.B)(y)Q(:ﬁ)(u)

o I'n+a+1l)
22 a+ B+

Tn+B+1)

1) —a—p—1
rél) (I+x+y+u) 2F1(

This assumes a particularly simple form in the ultraspherical
case @ = f3. Replacing @ and Sby A — ] and using (1.17) and
(1.18) we then obtain

3 I'n+1) a0 ~a A
ngo(” +4) Tt 21) Crx)C (YD 7 (u)

= [™ /2% T YA )] (x* + y* + u* — 2xpu — 1)~ 4,
(2.7)

which is valid for Re A >0and — 1<x, <1, u> 1.
To compute K, (x, y,z,u) we need Gegenbauer’s product
formula®?

CHx)ICH(y)
=T(n+24)/2%- T4\ n + 1)f Chxy

+ V1 —=x% T —y? cos ¢ )(sin ¢ }** ' d.
Thus, from (1.16), (2.7), and (2.8) we get
K, (x, yz,u) = [e™ /2%~ 'IY4)]

(2.8)

ll. EVALUATION OF J, (a,5,7.9)

atb+1l a+B+2 5, | A1 +x)(1+y)1 tu)). (2.6)
2 (1+x+y+u)
I
><J‘"(f+2gcosq$+hcos2¢i:)"1
X (sin g )~ dg, (2.9)
where
[=22 4+ u? + x* — 2xyzu — 1,
g =1 =31 =% (xy — zu), (2.10)

h=(1—x1 ),
with — 1<x, y,z<1, 4> 1. The integral in (2.9) is evaluated
in the Appendix. Using (A 18) we then have
K, (x, yz,u) = [e™ /22T YA ) (21)]

XW =4F (A /72,4 + 1)/24 + ,TW 3,
(2.11)

where T and W were defined in the previous section. Setting
A =} and noting that from the definitions (1.17) and (1.18),
C *(z) = P,(z) and D }/*(z) = (e™*/m)Q, (2), one can see that
(2.11) agrees with (1.14).

As we shall see now, the evaluation of J, (a,8,y,6) which is essentially the same as K (x, y,z,u) when x, y, z, u are all
restricted to ( — 1,1) is much more difficult. We can no longer use (2.7) since it is valid when » > 1. Rather, we must use (1.10)
whose derivation in Ref. 10 needed very careful use of the jump conditions (1.21) and (1.22).

One can deduce from (1.10) that, for 0<Re 4 < 1,
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0, ifyz— (I —y1 =D <u<yz+J1 =1 -2,

2 (n+4 ‘“I;(n:ziz);'w(y)c*(zw w={ + T [r}fﬁf’lz sinwd {(u - yz)* — (1 =1 — 2} =%,

1fu<yz—\/(1--?)(l——52 oru>yz+,jl—y2)(1—52 (3.1)

We now replace y by xy + (1 — x%)(1 — ;7) cos &, (x, y# + 1), multiply both sides by (sin ¢ }** !, and integrate with respect
to ¢ from 0 to ». By (3.1), the mtegrand on the right-hand side is zero if

|xyz + V(1 =1 =y zcos ¢ — u| < {1 — (xy + V(1 — )1 — ) cos ¢ *} /31 — 23,
which is equivalent to the inequality x, < cos ¢ <x,, where
= [zu —xy — VT =21 =) )ANUT =AM =), x,=[zu—xp + T =T = INT =T =»7). (3.2)
Alsc, we take the positive sign in (3.1} when cos ¢ < x, and the negative sign when cos ¢ > x,.

Let us set '

u=cosa, x=cosfl, y=cosy, z=cosd, {3.3)
O<a,pB, v, 8 <m. Then (3.2) gives

x, = [cosla +8) —cos Bcosy]/sinfsiny, x,=[cosla —&)— cosfBcosyl/sinBsiny. {3.4)
There are six possibilities.

i} x,x,< —1, which givescosla + 8)<cosif + 7).
(i) x,< —1, —1<«x,<1, whichimplies cos(a + 8} <cos(B + ¥) <cosl@ — &) < cos(B — ¥).
i} —1l<x,x,<1, whichmeanscos{f + ¥} <cosla + ) <cos(f — 7).
(iv) x,< =1, x> 1=>cos(a + 8) < cos(B + ), cosla — &) > cos(B — 7).
v} —1l<x, <1, x,>1=cos(f + ¥)<cosla + 8 ) <cosif — y) <cosla — ).
(vi) x., x> 1=>c0s(B — ) < cosla + 8).
Clearly, the contributions to J, {a,B,7,9) in these six regions arise from three integrals

1
f (1= 2P~ 1, — )xp — £)] =2t i 3]s 2] > 1,
-1

J‘n (1=t~ Y(x, —t)x,—t)] ~*dt, ifcosd<x,<l,
-1

and
1

(1=t~ "[(x, —t)x, — )] ~*dt, ifcosd>x,,

x2
where f+ 2gt + ht* = h(x, — t }(x, — t). These integrals are evaluated in the Appendix. From (2.10j and (3.3)
f—h=x*+y*+ 22+ u* — 2xyzu — 2 = cos’ a + cos’ B + cos* ¥y + 008’8 — 2 cosacosBeosycosS —2=W,  (3.5)
4 —m)=(1-x)1—y)1 —2%)1 —u’)=(sinasinBsinysin§)* =T, (3.6)

where W, T are the same as those introduced in {1.14) except that x, y, z, u are to be replaced by cos B, cos ¥, cos 6, and cos a, re-
spectively. If we denote

2'-%sinwd g, s (,1 A+1, 1 _z) '
= = ——— A+ —;TW % )=G,la, B,Y,5), 3.9
raren” 22 e B7,9) B)
and
21—, 1—-4 A4 w
T =472 (___,_,1,1 ————)__H ,7,6), 3.8
A et — )=t (@B7.9) 3.8
then we get the following evaluation of J, (2,5,7,6):
— G, (aB.y,0), if cosla + 6 ) < cos(B + 7),
—H,(aBy05) if cosia + 8 ) <cos(B + ¥) < cosla — ) <cos(B — 7),
LaBrs)= { if coslf + ) <cosle £ 6) <coslf —7), (39)
0, if cos(a + 6) <cos(B + &), cosla — 6 ) < cos(f — ¥),
H (a,By.5) ifcos{B + ¥} <cosla + 8 ) < cosf — ¥) <cosla — &),
G, {aB.y6), if cos{f — ¥} < cos(a £+ 6),

withO<Red <1 and O<a,B,y,6 <.
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APPENDIX: EVALUATION OF INTEGRALS
We shall evaluate the integral

I=f(f+2gt+ht2)“(1—t2)"“dt, (A1)
R

where R is either [ — 1,1] or an appropriate subset thereof
and f, g h are as defined in (2.10). Clearly,

[+ 2gt + ht? = h(t — x,)(t — x,), where x, and x, are given
by (3.2). For (i) x, y,ze( — 1,1) and |u| > 1, x, and x, are com-
plex conjugates, while for (ii) x, y,2e( — 1,1) and |u| < 1, x,
and x, are real, with x, <x,. The integrals that need to be
evaluated are

X)) At —x,) ",

I,=h—"J-1 (1—1¢
- (A2)

for x,,x, real but ¢ ( — 1,1), or x,,x, complex with x, = X;

L=h “fx'(l — Yo — ) Ay — 1) d,
- (A3)

2)/1 — l(t —

—l<x,<1;and
1
I3=h"‘f (1=t —x,)"*e—x,) " *dt, (A4)

— 1 <x; < 1. By simple transformations of the integration
variables one can show that

Il=2u“[h(1——x,)(1—xz)]“flt“‘(l —tp-t

—a —i
x(1— 2t ) (1— 2 ) d,
1—x, 1—x,

ReA>0, (A5)

L=2""h{x, + 1)]—*flt*—1(1 —t)—*

A—1 —A
x(l——l+x‘ t) (1——1+x' t) dt,
2 1+x,
O<Red<]1, (A6)

1
13=2*-'[h(1—x,)]-‘f tA=11 — )4
0

- i-1 - —2
X(l _1=x t) (1 _l=x z) dt,
2 1—x,
O<Red <«1. (A7)

By Eq. (5), p. 231 of Ref. 16, each of the three integrals is an
F, Appell function defined by

FiaB.B";v:x, y)
2 & @ninlB)nB)n

= mgo 2 i), x™y". (A8)
Also, by Eq. (1), p. 238 of Ref. 16,
FiaBB8'B + B,y

=(1—y)" %F\aBB + B';(x — y/(1 — y)). (A9)
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Use of (A8) and (A9) then gives
I =22"[T*A)/C24)] [Afx, + D, — 1] 7

2(x, — x;) 10
XA (2+1)(1—x1)) (A10)
2,1—1
12 = [h (‘x2 xl)] -4
ln
_ (% + Dxp — 1)) _
szl(/i,l ;B ) ) I, (A1)

O<Red <, since (A (1 —A) = n/sin 7A.
These formulas are further simplified by means of the
following quadratic transformation formulas!®:

Fla,b2b2)
(-2 o2 2 s (),

2 2 -2z
(A12)
and
Fi(a,1 —a;c2)
= (=2 R(SS2 2 — ).
(A13)
So, by (A12)

I, =221 [F*A)/I2A)] [hxx, —1)] 77

2
zpl(ii"‘_l +_2-,(.M)), (A14)

2 2 xx; — 1
L=I,=02""'a/sinwd) [h(x, — x,)] ~*
1—4 A (xf—l)(xi—l))
X —_— 1= . (Al5
2F‘( 2 "2 (x, — x,)? (A13)

From the definition of x, and x,, it follows that

hixyx,—1)=f—h, (A16)
2/h)g? — )2,
_ | ifmax({|x],|y},|z,[«]) < 1,
=TI ik m - g, At
if max(|x|,ly|,lz|} <1, u>1.
Thus,
I =22"1[C*QA) T QAf—h)*
AAtl, 1 4g—fh)
szl( 5 2= hP ) (A18)
and
L=1I1,=(n/2sinmAd)g* —fn)~*7?
1—4 A (f+hP -4
XzFI( ’2” 4(fh—g) )’
0<Re,{<l. (A19)
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Integrals of three Bessel functions and Legendre functions. |
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Integrals of products of three Bessel functions of the form & ¢*~ 17, (at ., (bt }H \ct )dt are
calculated when some relations exist between the indices A, u, v, p: in these cases, the Appell
function F, factorizes into two hypergeometric functions of one variable, so that analytical
continuation is possible. New results are given, mainly when a, b, and ¢ are real and positive and
|a — b | <c <a + b, which correspond to most physical situations.

I. INTRODUCTION

Few results exist for integrals of products of three Bessel functions. The most general case, given 50 years ago by Bailey' is
the well-known formula

f T A (at W, (bt K (et )t
_ 27 T(A +p+v+p)/AL (A +p+v—p)2)

Aruty g+ 1O)rv+1)
><F4(’1+"+”+p, '{+"+"‘p;u+1,v+1;—“—z,—-§), (1.1)
2 2 c c
for complex a,b,c (parameters) and 4, u, v, p (indices) provided that
Re(d +u+v+p)>0, (1.2)
Refc +ia +ib)>0. ’ (L.3)

F, is the Appell function® which is defined as a double series inside the domain |a| + |b | < |¢| [which is more or less
condition (1.3)]. In this work, we consider these integrals for A4, i, v, p, a, b, and ¢ real. Using the formula

iﬂ'Jp (Z) =e~ iﬂp/ZKp (e — |'17/22) _ ehrp/2Kp (ehr/Zz) R (14)
we get the related integral forc>a + b,
f t* =1 (at W, (bt W, (ct )dt
]
ab” I'(A+p+v+p)/Ar (A +u+v—p)2)

=2/1—l
Frury p+1)v+1)
1 ) /{ /1 _ 2 2
XRC['_e—llﬂ/Z)(P—i—u—-v)F“( +,U+v+p’ +utv P;‘u+1,v+1;a_2’b_2)]’ (1.5a)
4 2 2 ¢ c
_27'a I(A+p+v+p)/2) 1
e D(I— A +p+v—pV2) T(p+ YL v+ 1)
A A — > b?
><F4( tptvip Atpty p;#+1,v+1;a~2,%—), A<, A+p+v+p>0, (1.5b)
2 2 c ¢ 2
as F, is real in this region. !

Formulas (1.1)}-(1.5) are actually not very useful for two & b2
reasons. First, function F, being a double series is not very F4(0«', Bivsv's 2’ 7)
tractable (especially in numerical tests). Second, integral

(1.5b) is given for ¢ > a + b only, which means that it presu- = ITr(B—e (e‘" fi) e

mably does not hold when real positive parameters a,b,c can 'y —ar(B) c?

be the sides of a triangle (i.e., [a — b | <c <a + b), which is ( . a7

actually the case of interest in most physical situations. XFlaa+1—-yiva+1-5; 37’ F)
The reason is that the behavior of function F, outside T'W)\a—B) (. b2\

the convergence region |a| + |b | < || is not well-known de- m ( i 7)

spite some analytical continuation properties.’ For example,
we can continue F, into the region b >a + ¢,* from

, a
* Chercheur C.N.R.S. XF4(ﬁ +1=7 A v A+l-a _b—z_ ’ F) ’

633 J. Math, Phys. 26 (4), April 1985 0022-2488/85/040633-12$02.50 © 1985 American Institute of Physics 633



which exchanges b and ¢ and p and + v. A similar expres-
sion holds fora> b +cbutnotfor [a — b |>c>a + b.

Bailey already pointed out that more could be said
when the function F, factorizes into functions of one variable
only with simpler behavior and listed them." All known fac-
torizations of F, imply the hypergeometric function , F,
which can be analytically continued in all the plane, except
at most a cut along the real axis. Then, in those cases, for-
mula (1.5a) can be continued for {a — b | <c<a + b. This
property has been verified by quite different methods for
special values of the indices such as A =2, p=v — u (see
Ref. 5)or A = 2 — u, v = p where factorization occurs.®

We first list all known factorizations of F,. Some sup-
plementary relations may be obtained by using continguity
relations but we shall not deal with them. Setting

a=’l +;¢+v+e’ ﬁ='{ +,u+v—p’
2 2
y=pu+1, yY=v+1,
we have the following identities’”:
i) ifa+B+1=y+7 (e, A=1 any uv,p), (1.6a)

Fja, By X(1=Y), Y(1 - X))

=, Fa, B;v;X), File, By Y). (1.6b)
. aa x _ y
R e T R =T,
= (1 —x)"(1 —y)*; Fila,1 + a — B; Bxy), (1.7a)
which holds provided
p=v, A=2+4p. (1.7b)
i) (81 +a— BB,
o x ¥ ) (1.8a)
(1-x1-y (1—x)1-y
a , _p_x1—=y)
=(1 —y) 2F1(a9ﬁ;1+a B, (l—x])’
which implies
tp=p, A=v+2
or (1.8b)
+tp=v, A=p+2.

: . . x —_— y
(iv) F4(a,,3,a,ﬁ, 1=—x)l—y)  (1=x\1 —y))

_=xfl—yr (1.92)
(1 —xy)

for

A=2, Lp=p-v, (1.9b)
where we have explicitly used the symmetry (@, 8)and ( u,v).
Cases (ii) and (iii) are nearly the same and case (iv) has already
been studied.® They are special cases of the three-index for-
mula:

g . { JE— x - y
(V) F,‘(a,ﬁ,%ﬁ’ (1 _x)(l ._y) ’ (1 —x)(l _y))
= (1 —x)%(1 — yPFiay — Bl + a — iyxxy),
(1.10)
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where F, is again an Appell’s function® with convergence
domain |x| < 1, |xy| < 1. Finally, we have a last formula®

(vi) Fya,a + Ly:4:2,7)
=41+2') ", Fi(aa + §ps2/(1 +VZ'F)
+ i(l - \/z")_zazFl(a,a + 5;7’;2/(1 - \/7)2) .
(1.11)

This latter case is merely the Fourier transform of
t#=2J (at)and can be found in any table.® In this paper, we
deal mainly with cases (ii}(v). Case (i) is investigated in a
companion paper.'® Actually, they are not fundamentally
different as will be seen by inspection of the two families of
variable transformations we study first in Sec. II:

22} >x,y), (22 XY).
In the following other sections, we explicitly calculate
the integral

fw t* =\ (@t (be ) H Vet )t
HW(ct) =T (ct) +iY,(ct),

when a,b,c are real and, respectively,
A=2xp, p=v
[Sec. III, corresponding to case (ii)] ,
A=v+2, p=4p
[Sec. IV, corresponding to case (iii)],

(1.12)

(1.13)

A=2, p=p—v
[Sec. V, corresponding to case (iv)] .

Some further remarks about cases (v) and (vi) are given in the
last sections. In the conclusion, we indicate some possible
generalizations.

Il. STUDY OF THE TWO FAMILIES OF VARIABLE
TRANSFORMATIONS

We have to consider at length the changes of variables

__:_x__=gi’ ___:y__=b_22 (2.1)
(I-x)1-py ¢ (Q-x1-yp ¢
and
x1-v)=%, vo-x)=2_, 22)
c c

where a and b are two real variables and ¢ has a small positive
imaginary part. Actually by the involutive transformation’
(e, ¥ —X/(1 —X), — Y/(1 — Y)), thefamily (x, y) trans-
forms into (X,Y).

A.Family — c2x=a?(1 — x)(1 — ),
~ ¢ty =521 —X)(1 — y)
Here, x (resp. y) is a solution of
xb?—(@+b*—c*x+a*=0
[resp.y?a®* —(@®> + b2 — Ay + b2 =0].
The discriminant of this second-order equation reads
§=I[l@+b)—cl@a—b)—c*]
=a*+b*+c*—2a°h% - 2b%* — 2%,

(2.3)
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where 8 is positive forc >a + borc < |a — b | and § is nega-
tive for a + b>c¢> |a — b | (triangle inequality). To remove
the ambiguity when solving (2.3), we have to take into ac-
count that the F, reduction is valid where x and y lie in
certain regions surrounding x = O andy = O (see Ref. 1). For
¢>a + band large, Eq. (2.3) has one solution which behaves
asc?/b 2, which is large and the other as @*/¢?, which is small.
As a consequence the F, reduction is valid if
2b%x =a? + b% —c* + & for c>a + b, where /§ is posi-
tive. It is easy now to follow the determination of 5 */? for
O<®<w.Letd=[Z—(@a+b))[Z—~(@—b)] Inthe Z
plane, '/ has a cut on the real axis for | —b|*
<ReZ<(a+b)

We are interested in the case Im Z = 2icy, for % small
and positive. In this configuration

c>a+b, 82=J5=44,

Im 6 '/? = (29e/\6)(c* —a* — b%)>0,
la—bl<c<a+b, 8= —5=¢"".44,
c<la=b|, 8=e= -5,

Im & "2 = (2nc/J6)a* + b* —c?)>0. (2.4)
Note that 4 is the area of the triangle whose sides are a, b,

and ¢. To derive the x and y variables, it is convenient to
introduce angles’

O<c<la—b],
x={a/ble ", 2abcoshu,=a*+b>—c*,
y=(b/a)e”“, 2absinhu, =5,

c>a+b,
x= —(a/b)e” ", 2abcoshu,=c*—a*—b?,
(2.5)
y= —(b/a)e” ", 2absinhu, =§,
la—b|<c<a+b,
x=(a/b)®, 2abcosp, =a*+b*—c?,
y=(b/aje "%, 2absing,=y—6& .
Incase |a —b|<c<a+b,
Imcos g, = — (cy/ab)<0. (2.6)

For c¢<la—b| or c>a+b, 262Imx= —2p
+Im & Y2 = (2cn/\/6)2ab [coshu, —sinhu, ],  which
yields Im x = 2c5/y/6|x| positive. The same is true for
Im y = (2¢//8)| y|. As a consequence,

c>a+b, x=é"asble”, y=é"b/ae™ ™. (2.7)

To complete this study, we have also to define the variable
1 — x{resp. 1 — y), which is a solution of the equation

b1 —xP—(b*+*—a?)l —x)+c*=0
[resp. a1 —yf —(@* +c* — b3l —y)+*=0];

(2.8)
e>a+b, 1—x={c/ble™ ™, (1—yp)=(c/a}e” ™,
2bccoshu, =c*+b*—a*, 2bcsinhu, =6,
2accoshu, =c®+a>—b?, 2acsinhu, =8 ;
(2.9a)
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1 — x = sgn(b — a)(c/a)e*"** =2,
(1—y) = sgnla — b)(c/a)e™™ =",
2bc cosh u, = (b* 4 ¢* — a%)sgn(b — a),

e<la—b],

2be sinh u, =3, (2.9b)
2ac cosh u, = (@®> + ¢* — b¥sgnla — b),
2acsinh u, =8 ,
where
+1, if b>a,
b— = — p— =
senlb —a) = —sgala—b) = | * 1* 10>
la—b|<c<a+b, l——x=%e”"p‘,
l—y=Se ", (2.9¢)
a
2bccos @, =b*+c*—a?, 2bcsing, =5,
2accos @, =a*+c*—b?, 2acsing, =5 .
Note that since x/(1 — x)(1 — y) = — a*/c?, we get at once
ein1¢>..+m+¢c)= —1lor
ot @ +@. =7, (2.10)

The geometrical interpretation of the @,’s is thus straightfor-
ward.

For the same reason

e Yt or u,=u, +u, 2.11)
and

exp( —u, +sgnl@ —b)u, —u,)) =1
or

u, =sgnla — bl{u, —u,). (2.12)

From the previous study, both Im(1 — x) and Im(1 — y) are
negative.
As a consequence

(1 _ X) — e—liﬂ/Z)[l —sgn(b—-a)](c/b )e"a sgnih — a) ,

(2.13)
(l _y) @ — /21 —sgn(a-bn(c/a)eubssn(a—-bb

b

e<la—b|.

B. Family c2X(1 — V) = a2, c2Y(1 — X) = b2
Taking advantage of the involutive transformation
A —-X/1-X), -Y/(1-7))

we get at once the unique solution for the (X,Y) family; for
instance,

C>a+b, —X =X=:_(.2£b_)e_.___c=_a..e—ut"'ua’
1—x t(c/ble " ¢
or
X=\(a/cle™ ™.

We summarize the results in formulas (2.14):
e>a+b, X=la/cje™ ™,
Y=(b/cle *;
c<la—b|, X=sgnla—b)a/c)e™" """,
Y = sgn(b — a)(b /c)e’™" ~
le—b|<c<a+b, X=(a/ce™ ™
and

Y=(b/cle . (2.14)
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For the sake of completeness, we study the family ob-
tained by the change c—ic, namely X (1 — ¥) = — a*/c*and
X(1—-Y)= —b?/

X (resp. Y)is the solution of the second-order equation

X?—-X(—-a*+b*+c})—a*=0

[resp.c’Y2 —Y(—b% +a’+c})—b*=0].

The discriminant § ' is now always positive fora, b, and c real:

=@ —bP+cP+2a*+b7). (2.15)
The unique solution reads
Y= +b?—a*—\§
= 7
2 2_ K2 _ g
(resp.Y: c+a b ‘/5_), (2.16)
2c

because for large ¢, X and Y have to be small.
Here again we may introduce the hyperbolic parametri-

zation
X= —(a/ce ™ (resp. Y=(b/cle ™),
2

2acsinhv, =c* +b* —ad*,
(2.17)
2bcsinhv, =c*+a*>—b?,

2ac coshv, =& , 2bccoshv, =& .

W.CASEy=v,A= +p+2
We treat here a case for which the F, function takes a
simple form, namely

. =X -y
Ao BB T Sy i)

= [(1 = x)(1 =y, Fila,1 + a —B; Bxy).
Indeed

a=/1+/t+v:tp, B=l+#+v¢p,

2 2

y=p+1, yY=v+1.
The conditions y =y =Bimplyu =v,A = +p+2,

a=v+1Fp, B=v+1, l+a—-B=1Fp.
Let us define

fE= f dtt'¥e] (at ), (bt )H et )

(3.1)

=2 -2 fim j £1FP 4t T (at (bt
r 70" Jo

XK, ((n—ick),
for

]p|<%, v+ 1+infl0, Fp)>0, (3.2)
Fp vh vV

i=lim(—71—)———2 ‘b

w0 \im/ (n —icp *2FF

( n— ,'C)Z(V+ 1Fp)

e—i1rp/2 F(V+1$P)
v+ 1)

X :Filv+ 1Fp,1Fpv + Lxy)

a2y +1F»a)

Xxv+1Fe, (3.3)
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This last equation is obtained by replacing (1 — x)(1 — y) by
(9 — ic)/a)’x:

f* =(£)23Fpavbve—(m/2)pu;1] (1‘(v+ 1$p))
® 'iv+1)

T

X v+1Ffp
X(F) 2Fiv+1Fp 1 Fpv+ 1Lxy).

{3.4)
At this stage we have to examine three different cases.
() c<la—b|, x/a*=(1/able™ ", xpy=e
[see formula (2.5)]. Let Z = cosh u, and £ = e*. Thus, from
’ ' 2 __ /2
Qy:(z)___Z;t'eiy’ﬂ\/; F(V +lu + 1) (Z })“
v rwv+372) ¢v+#+1
Xo Pyl +p'v +p + 1,V +31/87), (3.5)
where Q*(Z) is the associated Legendre function, and set-
tingv' =v — L and ' =1 T p, we get at once

2F(v+1Fp1Fp v+ Le

2uc)

Le"c'v"']:FP)Zj:p—l/Zei(j:p—l/z]ﬂ I'iv+1)
V7 r'iv+1%p)
X (sinh u,)F7=12Q ¥, 1% (cosh u,) (3.6)

and

jw dtt'FoJ (at ), (bt)[J, (ct) + i¥,(ct)]
- (i) [__1_ lab)*e7t
in/ |27

c tp
e Ep = 1/2)Q ‘Z’F_pl-f/-zl/Z(cosh u,)le- (im/2p(1F 1)
(3.7)
(ii) c>a + b. Now x/a®> = — 1/abe” “. Thus a phase
e +1¥7 appears the remaining part does not change [see
formula (2.5)]. Thus,

(sinh 2, )P~ 12

fw det'FeJ (at W, (bt)[,(ct) +iY,(ct)]
- (2) [ ez
i) |2 c**

XemMEr—120 Fo 4 Vicosh u, )]

(sinh u,)t°— 12

Xe—lifr/Z)pll$lleiﬂ1V+1:Fp) . (3.8)

(i) |e—b|<c<a+b, x/a*=1/abe’™, and
Im cos ¢, <O [formula (2.5)].

Let Z=cosg,. To apply a formula like (3.5),
(Z? — 1)/? has to be defined as e + ™%(1 — Z )'/2 depending
on the sign of Im Z. In our case Im Z is negative, thus

(Z? —1)V2 = e~ "% sin @, (sin @. > 0),
Q‘:;(COS Pe — io)

— T r'(v+up' +1) e —lim/aw
v +3

X (sin @ e e T
X Fill ' +u' + 1V +3,e7%). (3.9)
Using the property
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e~ UM QE (x — j0) = Q¥ (x) + (in/2)P¥ (%),

where P’:,’ and Q0 ’:,' are the Legendre functions on the cut, we
get

J dit' ¥ (at W, (bt)H J(ct)
(V]

_2 1 (ab)*e—!
T 27 cte
X{Q Foi7"cos g.) + im/2P T2 i3, *(cos . )}
e~ 2e(1F1) (3.10)

Note that the results for A =2 — p agree with those
already found.'? In the special case A =2 +p, u =v=p,
one can obtain directly the result’® and check our general
formulas (3.7), (3.8), and (3.10):

WA +p+v+pl=2v+1,
M +p+v—pl=v+1,

(sin @, )P =12

asdA=p+2u=v=p,

then
—x

F(v+1,2v+l,v+1,v+l,—,
¢ (1—x)(1—y)

—J
=) |
= (1= =1 2y + Ly + Ly + L)
[ e

(1 —xy)
and

f 1T (at (bt \H V(ct )dt
0
2 o~ i™/2 (@b)2” ("7 —ic )4v+2
i (p—icf™>\ a
X[ x ]2"+‘I“(2v+1)
1—ypx I'v+1)

x ]2v+l r@2v+1)
1 — xpja® Fv+1) '

(3.11)

_l — iy, v
_ivre (Zabc)[(

i) la—bl>c, Z=5—, (1—xp))=1-—e",
a ab

x _ 1
a*(1 —xy) 2absinhu,

N
F(V+—),
2
thus

J- dtt'+>J (at W, (bt \H V(ct)
(V]

= (—1—) 2 :[v__ : (@abey' " (v + i) 1 e ™,

i p 2 (Z )2v+ 1

-1
44
Moreover,
I'2v+1) 2_2”
'iv+1) Jr

(3.12)

(i) @a+b<c, x/a*= —e”“/ab. Thus a new phase
™+ = _ ¢%™ appears and
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f det'+*J (at ), (bt \H 'Y(ct)
(4]

- _ (i) 2 :/V_— ' (abeT (v + i) L eim,

iﬂ' T 2 ZZV+1
(3.13)
(iii) g —b|<c<a+b, x=(a/b)*,
x el‘% e™? e™?
a1 —xy) ab(1 — &%) " 2absing, 44
and
f det'*J (at W, (bt \H Vct)
0
2-v-! v 1Y i iy + 1/2)
= (abe)’ T {v + —)e "¢
inw 2
22— ( 1) 1
= abe)'I — . 3.14
17_\/; ( ) v+ 2 A 2v+1 ( )

The general study would have given

f= Lw det' +*J (at W, (bt ) H Y(ct)

as a function of Q%+ |72 which is simple. Indeed

e_"””"’Q’:,'(Z)I’(v'+g)
}=2"‘/+1\/;F(v'+,u'+I)Z_I—V'H"
1+V,—#’ 2+VI_”I

b ’

2 2

x(z7 - 1)1,

v’+%,Z“2). (3.15)

Thusforpy' =v' +1,, F, =1,
e~ QY +1Z)
=2"FW + 122 —-1)- W2+ for Z>1
e” QY+ YZ — i0)
=2"T'(V + 1)(1 — Z 3~ (/2 + llg+ /2 + 1)
for |Z]<1. (3.16)

Applying formulas (3.15) and (3.16) in the formulas (3.7)-
(3.10) for p=v, v =v—4, we get, for c>b+a or
c<la—b|,
e~ Mgt (cosh u, )
= (sinh ) =¥+ 22"~ 12 (v 4 §)
(sinh u, =24 /ab)
and
&= 10 Plcos g, — i)
- (Sin ¢c) —v+ 1/2)2v— 1/2F ('V + i)e(lﬂ/z)(v+ 172) s
fora+b>c>la—b|, sing, =24 /ab.
Thusfor |[a — b |>c,
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fw det'+>J (at M, (bt ) H Vict)
(4]

= (3) [_1.._. (ab ) - v+ "c“(sinh uc) - 12y — iy
i/ 27w

X [(sinh u,) "V -2 (v + %)”

( )2v+1 ’

in agreement with formula (3.12) and similarly with formula
(3.13) in the case a + b <c by adding the phase ™+
= —e*? Fora+b>c>|a—b|, formula (3.10) reads

TABLEL

tt J(at)Jv(bt)Y(”

any real a,b,c. Case p = v is given for completeness.

Jw dee'+J (at ), (bt ) H Vict)
Q

2) 1 _ .
={—]—=fab)"*'singp,) "+
(Tr 27 ec)

X {Sin ¢)c} -y + 1/2)2v— I/ZF(V + _;_)
W+ i+ 1/2), — iy

_labe2 " 'riv+1)
T ,”,A 2v+1

in agreement with formula 3.14.

All the results of this section are summarized in Table I.

 epie let)l _ 1 [2 @) v — 2 -t 0
J;dtt “J.,{ar).f,,(bt){Y(a)}-—;\/;——c;—(smhu,)" 2gtrie "”Q,_",,z‘/’(coshuc}[l},

r

c<la—b|, 2abcoshu,=d*+b>—¢*, jabsinhu,=4; 44 =\[F~=

l@a—bd7I—a+bY].

2 {@b)e—' — /2o - —p1 — sin(v — pjr
[ arer=sa s gon| ,,(a)} ;\/—;———C—;—-(sxnhuc)" o= ri i teosh | TS P,

e>a+b, 2abcoshu, =c¢*—a*—b%, jabsinhu =4.

la—bl<c<a+b, 2abcosp, =a*+b>—c*, labsing. =4,
i [V+l>0
2)

44=\J[—(a—bF]la+b) -1, p>~—

,

S8 Hcos @, 3}

- J’(ﬂ)} 1 2 @) . {WW’
1 » LI 172
fo drt #Jv(at).fv(br){}; el = \/; L —ping.yp o

{for Jp)

v+ 1—(p+|pl/250 (for Yp) .

T <

w J et —p=1 ) i
L dttli-pjv(at)'}vvtbt)[;{ )}___iﬁ (ab} : (sinhac)—p—l/2e—Mp+!/2)ijll//22{cgshuc){ S!nn'p}’

Hlet)
c<la—b|, 2abcoshu,=a*+b*—c*, labsinhu, =4.

* Jlet -t )
J;dttuﬂ,lv(at).lv(bt) ot ’]=LJ_§_‘E££:_;__(Sinhuc)—p—l/Ze—(lw/2)(p+l/2)Qp+ (coshuc)[ smw}

Y, (ct)
e>a+b, 2abcoshu, =¢*~a*—b?, jabsinhu,=4.

T

cos mp

COS TV

172

= J, (cr)} 1 2 @by-r-t { cos mpPL7 | (cos @ Y(m/2) — sin mpQ4 L 173 [cos %)}
ti+e t Stld == e 2 -p-172 ’ s
L dt J at ), (bt} Yp(ct)' p P {sing.} — sin mpPL* 1/2

T

la—bl<c<a+b, 2abeosp, =a*+b>—c*, —;-absinq;c:A, P

4117 cos @ )m/2) — cos mpQ4 17} (cos @)
1 [v+1+p>0 {for Jp)
v+ 14(p—]pl/2>0 (for Yp).

V(CJ] 2!

+v v 1
J‘ dtt! J(at).lv(bt){ o = (abc)l"(v+ )

(A )2v+1

e<la—b}, <l

1 {—sinm{]
—cos v}’

fdn'*v(atp,(bz){ (“)} 27! L (abe) (V+l) >1 {~sin1rv}’

Y(Ct) (A '2v+l

mr

c>a+b, |vl<i.

f dtt‘+"Jv(at)J,,(bt){JV(€t)} 2!

Y {ct)

la—blce<a+b, |v|<i.

2 e () e lol

COs TV,
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IV.CASE +p=p,A=v+2
For these values of A, u, v, and p, we use the factoriza-
tion formula

—X
F(a,B,1+a—B,B,———)
) (1—x)(1 -
=(1—y)02F1(a,ﬁ,1+a—/3,-‘—;‘-(_1—x’i)), (4.1)
where
a=v+1l+p, B=v+1.
Let us calculate then

f= [ arer e enm e

=2 fim dtt"“.l (at W, (bt)

T -0t

><e¢‘"'/szu (( n— lC)t) s

v<}, v+ 1+infl0,u)>0,
f= (.l)e:F(l'ﬂ/Z)p 2Va:b" . F(V+ 1 +/‘)
" (g —icprre+?  I(l+p)

X(1 —y)”*"*‘zFl(v+ l+puv+Lu+1,

—X(l—y)),

1—x

f= (.i)emv + N glim/2p1F 1]
T

— 2u,

e>a+b, —x(1 —y)/(1 —x)=e" 7,
1 —y =(c/a)e . See formula (2.9a). From formula (3.5),

LR+ 1+puv+L,p+le ™

=_1_eu,,(1'+1+#) I'(p+1) e—lv+12my—v—172
i Tw+1+a)
X(sinh u,) =~ '?Qx+ % (cosh u,) . (4.3)
Thus
f= (&) e+ g +m/ 2T 1] b”
in) 2r (ac)+?

X (Sll’lh u ) —v— l/Z{e — v+ l/2)1rQ v+ lléi (COSh u, )} .
2u, sgn(a — b)

(lije<la—b]|, —x(1 —p)/(1 —x)=e ,
(1—y) =e—mr/2)[|—sgn(a_b)](c/a)eubssn(a—b)

[see formulas (2.9b) and (2.13)]. One configuration is simple;
namely, fora <b, (1 —y)=e~ "(c/aje ™ *

We still apply formula (3.5) and get the same result as
before but for the phase e = ™+ #+1) We get

— (im/2)ufl + 1] v
r=(2) " (sinh u,) == 12
i V2r  lae)!

x {e —iv+ 1/2)er v+1 Mt (cOSh Uy )} @4

In the case a > b, formula (3.5) does not apply and we need
the analytic continuation of , F,(a,b,c,Z ) as linear combina-
tion of , F(a’,b",c’,Z ~'); namely (Ref. 4, p. 108),

FlabeZ) _ I'b—a)

(—Z)~¢
2%a*b® v+ 1+p) (1 ypen+t .2 I'(c) re)ric—a
e +2+r T(1+p) X, Fyal+a—cl+a—bZ™)
—x(1—y)\.
X2F1(V+l+,u,v+l,,u+1,—l—_—x—), r([‘)(la‘(_b)b)(_z)_b
a C —
1—x (l—x)(l—y) s X, Fibl+b—c1+b—aZ™"), (4.5
]
a=v+1l4py, a—c+l=v+1, Re Z = (a/c)(1 — y)? = ™™,
b=v+1, a—b+1l=p+1,
c=1+4u, l1+b—c=14+v—pu, ImZ<0 [see formula (2.7)],
l—a+b=—u+1, thus(—2Z)=é"|Z]|,
[
2Fiv+ 1+py+ L1+ pe’™) 2Py + 1 +py+ 1,1+ pe™)
I+ r1+p)
_ I'(—p) — ity + 1+ )y = 2uply + 1+ ) 1 e~ Y+ U =V = 12ginh gy, )~V = 12 T MM
Cv+1)r(—v T Cv+1+py)
Xo By 4+ 1+py+1,p+ Le™ ™) - .
241 # ’u Xe—i(v+l/2)1r r( ﬂ) e‘"’“l‘(y+l)
I'(p) — ity 1), — 20l + 1) v+ 1O (—v)
rv+1+pl(—v+p) I'(p(1—p)

X Filv+1—pv+1,—pu+ le ™).

Now we apply safely formula (4.5) for each , Fj in the right-
hand side to get

639 J. Math. Phys., Vol. 26, No. 4, April 1985

XQ@¥+12(coshu,) +
A b) T —vt+ul v+ 1—p)

xXQ" 1/21/2 (cosh “b)]
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f_.___ + (i) 1 e+(m/2)y[l F ”(smh u )— v 1/2
V2
b” e {v+ 1/ 2)m/2

(ac)v+i

X [sin vire = #7Q ¥+ 7% (cosh u,,)

sin p7r

-+ sin( m— V)‘IT V_m‘iz:/z (COSh ub)] .

Now!*

(018 '(Z )sin(v' +,u)1r+Q_v .
= e’“"cosva';,(Z).
Thus

v+ 172

(Z)sin(p’ — v')r

Z1a(cosh uy)sin[v —p + 1]
= 176‘(""’ /27 COS[ ﬂ _ é ﬂ']P;+ 1/2 (cosh ub)
— @t Y2 (cosh wy )sin(v + p)r
and
f= = (.3) __.1_ e T/ u1F ”(Sinh u,)”*" 172
ir/ 2w

[+ @t Va(cosh uyle~ -+ /2

( )v+l
—wP;t5(coshu,)] . (4.6)
(iii) je —b|<c<a+b,
2 ) 2 2 2
%(1 —yP=e" ", 25Imcos @, =£j—i—2—‘l—lmc,

f= ('i)eiﬂ(v + l)e<i1r/2)u[l F l]2vapb Vo—#— 2y 2
T

v+ 144 e
{14 u)
X Fyv+1+pv+1Lu+ Le ),

and Im cos ¢, sgn(b — a) is positive.
We apply formula (4.5) in the case a < b. Indeed for

Z=cos@, ,(Z?~1)?=¢®t-a"2ging, .

ipfv+u+ 1)

and

[Z—-— (Z2 ” 1)1/2}/[21‘- (Zz " 1}1/2] —e

From formula 8.777.2 (Ref. 6, p. 1012), we get

LR+ 14y + Lu+ Le ¥

_l_ein(V+‘+“)(

N

Xe ™+ VQ 2 cos g, + 0)

I{p+1)

rv+1+u)

- 2i sgn(b — ajp,

v— I/Ze — (/v + 1/2}

sing,)”

— v 1/2

and
enr(v+
f= (;) Nz
X [@+ 5 (cos @,) — (in/2)P ;i (cos @,)] - (47)

In the case a> b, we need either the analytic continu-
ation formula (4.5) or the relation

e+(i1r/2)u[l:Fl] —v—1/2

av+lcv+l

(sin @,)
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2R+ 14 py+ L+ Le™ ¥
=, F*v+1+pv+1u+ 19,

where , F * means the complex conjugate quantity. This
yields

JFWv+ 14+ py+ 1, u+ 1,657

1 —ipplv+ 1+ p) - —v—1/29 —v—1/2
=—0 (sing,)~ >~ 2~V
JT ’
I'p+1) .y
PRV X e Y S T cos
Tw+1+p) [ 172(CO8 @,)

+ (im/2)P )t 3 (cos @,)]

since in this case Im cos g, is negative. Thus

SR+ 1+py+1,p+ e 2

1 QeI ;s}(

Jr
e+l
'iv+1+pu)

— (/2P TV (cos @,)]

Sin ¢b)-v— 1/22—v— 172

[@ %V (cos @)

and as expected the result is the same for @ > b or b <a when
la—-bl<c<ca+b.

All the results of this section are summarized in Table
II. Note that some integrals in Table Il are identical to others
in Table I by the change v<sp and b<>c, which is a good
check of our method.

V.CASEA =2,p=p—v
We have to consider integrals of the form
f tdtd (at W, bt {J, _ (ct) +iY, _ (et)}.
5 :

They were already calculated by using another method in a
previous work.®> Here we give another way to get the results
which gives a consistency check.

For this configuration

(p+v+A—-p)/2=v+1,
(p+v+A +p)2=p+1,

and

F4(—;—(u+V+/1 +p),%(/i +u+v—-phu+lv+1;

(1=x)1—y)  (1—x)t—yp)

=4 —x)”l*_‘(i;y)‘““, (5.1)
with
(1=t —) = (=2 )5 = (222,
77 small and positive. Thus
A. Gervois and H. Navelst 640



TABLEIL
® J ct
f d::lw.r,,(a:}.rv(br}{ wul }}

A Y

s ulet)

and any real a,b,c.

vel [V+ 14 (g +p/250  (for J)
27 v 14 (p—|ul)/2>0 (for Y)
et in
f diti+vr (at)Jv(bt)[;(( t)) _:r'\/:(aC) (sinh u,)~ "~ Ve~ '“v+l/2’Q"+'/2(coshub)[ csos.;“:]’

14y —M(a) 1 2 {ac) ! Ve /2, imiv+ v4 Y
L dtt J”(at}l‘,{bt){y_#‘a)}—--;-\/;b—_(smhu) /2g - it V”Q#_}Q(OOSh%){__I}»

b>a, c<b—a, 2accoshu, =b%*—a*—¢*, gacsinhu,,=z.

f dre'+J (at).lv(bt){

f dre' 7l (at).lv(bt)[ “(( t’)] %\/Z(ch)__v__l(smhu) v=1n2

a»b, c<a—b, 2accoshu, =a*—b*+c*, Qacsinhu,=z.

e )}"1 2 fad” l(smhu j=v- l/z{ — sin yme ™ M+ VAQ AT 1 (cosh u, ) ]
Yet)] w7 b~ cos vire ="+ VAQ ¥+ 12 (cosh u, ) — wP )t 5 (cosh uy)

v 172

— sinf g + vire =+ VAQ >+ 12 (cosh u,) — m sin Pt V% (cosh », )
cos( p + vime ="+ VAQ + 12 (cosh u,) — m cos umP )t V3 (cosh uy))

o J. et —v—t
f det'*J (at }L(bt){ e )} =1 \/Z ("‘—_ (sinh u,) "~ 2~ #+ QY+ V2 (cosh u,,){
w T

Y, lct) b

+ —v—1
f dre' g, at).l,,{bt)[ }'_ﬂ((;);} - J—Z—-@i__v(sinhu,,}"“”ze'“”"z"'Q;ﬂg(ooshub}[
T

e>a+b, 2accoshu,=c*+a*—b?, jacsinhu,=4.

—sin wr}
cos vl ’

— sin{v + ;u)ﬂ‘}
cos{v + ujr

cos{vm(m/2)P;* \73(cos @) — sin vrQ .t 175 (cos p,)

. We)) 1 2 (a9t -v_m{
[[ar ’“‘“’”“‘b”{Y(ct) "}7\/; b= O iyt 20P . i (cos ) — cos v Vieos )]

J- deet+vs (at)J,,(bt)[ _“(‘:))} %ﬁ%‘—_v‘.‘__l(ﬁn¢b)_‘,_1/2{

la—bl<c<a+b, 2accos@, =a*+cF—b?, lacsing,=4.

cos[(v + p)ml(n/2)P ;> (/3 {cos @,) — sin[(v + p)r] @+ A (cos %)]
—sin[{v + gjrl(m/2)P}* i (cos @, ) — cos[(v + wim)Q 1+ Vilcos @)}

Jm tdtJ (at)V,(bt)H')_,(ct)
(]

= lim (—2—) a*h” e~ im/Au—v
70" \im) (g —icp+>+?
x(l_x)v+l(1 _y)u+1 ’
1—xpy
= (2) e e (L) A
ir ¢ a 1—xy’

Here again, three cases have to be studied.

X 1 - -2
=T, xp=e ",

(i) e<la—b|, = prs

and
(1 - x) = ¢ — /21 — sgn(b — a)) _1_ glasEnib —a) ,
c b
where u, and u, are defined in formulas {2.5) and (2.8).
f tdtJ at W (bt H _(ct)
0
( 1 ) e Mo + (v — pju, sgalb — a’e(iﬂ/Z)(v — p)1 + sgn(b — a))

24

Q

i

(5.3)
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{ii) ¢ >a + b. In this case

x T S B I
S =etT—e 7, =—¢ ",
a ab ¢

and

f tdtJ,(atVJ, (bt H'Y_ (ct)

( 1 ) e—#“ce—("‘—i‘i%eimf

_ . (5.4)
24

(iii) [a — b | <c<a + b,

i

X 1 . 1—x 1 _; 2i
_2__ "P‘, T e @ up,’ Xy=€’¢c
a ab ¢ b

where @ and @, are defined in formulas (2.5) and (2.8). We
thus get

i[ve. — (n— vigp)

f tdtJ, (at W (bt H! (ct)= le » (3.3)
(]

T 24

where @, + @, + @, = 7, and 4 is the area of the triangle
{a,b,c): '

Ad=1Jla+b+ola+b—clla—b+c)b+c—a)
=}absing, =4 bcsing, =}casing, . (5.6)
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Note that to recover easily the results of Ref. 5, we have to
make the following change of notation:

p—p' +v, a—od', @@, u—u
’

p—vou', bob', @@, u—u,,

v—v', c—ad', @Q.oe,, U U, .

For instance, (5,5) reads
f tdtd, (W, (bt H (@' ) =" "  2A
0

(5.7)

This method does not give the result for the integral
S W latV, (b)Y, , (ct)dt. This integral is calculated in
the following paper'® by differentiating other known inte-
grals.

VILCASEA=v+p—n+2

All preceding examples are results of the more general
formula (1.10)

.1y B —x -y
Al T T
= (1 = x)%(1 —=y)*Fyfesy — B,1 + a — y;7x.xy) 5 (6.1)
which holds provided
A+p=v+p+2
and corresponds to the calculation of

fo tvre—#r g (at ), (bt )H et )t

_ 2v+P"I‘+la“bV F(V+p+ l) iei”“'“”’
e+ Lp+l) i

(6.2)

a’> b?
><F4(v+p+ v+ Lu+1lv+ 1;?,7) . (6.3)
The function F(...;z,2') is again an Appell function and it has
a series expansion in powers of the two complex variables z,2’
in the domain |z| < 1, |2'| < 1, i.e., here

eyl <1, (6.4)

but in the absence of supplementary conditions on the in-
dices A, u,v, p nothing more can be said. We just add some
comments on its existence.

Because of the cyclic analytical conditions for F, al-
ready quoted in the Introduction we can extend these re-
marks to regions b >a + cand a > b + ¢, i.e., for all configu-
rations when a, b, and ¢ cannot be the sides of a triangle.

We turn now to the case [a — b | <c <a + b. We recall
that (Sec. IT)

x=(a/b)e®, y=(b/a)",

l—x=(c/ble ™, 1—yp=(c/aje” ",
where @,, ¢, and @, are again the angles opposite to sides a,
b, and c. Here,

Fi(v4p+ Lp—vy+p—p+ L+ 1ia/b)e® %)
has a meaning as a double series when a < b, as the function
F\(a; B, B';v:x,1) exists when |x| < 1. It is no more true when
a> b. Using the analytical continuation (Ref. 6 Page 1055,
formula 9.183.1)

|x| <1 and
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Fila; B,B'vz2)=(1 —z)~B(1 =)y —=—F#
—z,

XFl(V—a;B,r—ﬂ—B';r,—,Z'),

z
z—1
we get here (z = x,z’ = xy)

F, = (e—i%i)v_" (1 — PPY ==
b

XF(u—v—pipu—v,p—p; pp + Le” *#,7%)
which is a convergent double series as Fi{a; 5, 8';;1,1) exists
provided a + 8 +B'<y, ie, here A +v+p>u+1 or
2(v + p — u) + 1> 0. Collecting all these results, we get

J; tvremu+i] (at )V, (bt )H Vet )t

2n—p—V(ab)u—v—p—l
B me c

F(V+P + 1) (sin¢c)2u—2p—2v—l
'ip+1)
Xein(y—p)e—}'v’a(#—p)e—i%(2ﬂ—-p—1')
XF(p—v—pip—v,p—p;p+1
ey, (6.5)
(6.6)

— 2i
e “Pb’e

for a—b|<c<a+b.

VI.L.CASEv= +},p= +1}

In order to use formula 1.11, namely,
Fa,a + L,7.},2,2)

= (1 +2) 7%, Fla,a + Ly.2/V7 + 1))

+4(1 —V2) 7%, Flaa + Ly2/W7 —17), (1.1)
we have to impose v= —1 and p = +}. We deal with
Fourier transforms. We thus consider the integral

fo= [T de e ).

For ¢ > b + a we get the result by using the general formula
(3.3) and the factorization, namely,

(B) [ arer= wataryr st aerle =
T 0

- (.L)ZA —2_ @ /A + g — lim/A)[1 £ 1)
i wbe

Ilp+4)2 - Hr(p +,1)/2)[ 1
I'ipg+1) c+by+e-!
+A u+i 1 a’ )
X F(/-‘_’—_'—, 1,
2N 2 R Y
1 (p +A p+4i
2F1 ’
fc—by+s—1 2 2
1 a’ )]
_ 1, ——J]. 7.2
PRI (72)
Actually it is simpler to note that
J1/2(2) = sin z(y2/7z)
and
J_1/2lz) = cos z(y2/nz),
so that
A. Gervois and H. Navelet 642



TABLE IIL

hd 1F1
[Fare ey e pter), d+pstEL
0

and any real a,b,c.

A<§

f”dn*—'Jy(azv_.,z(brv_m(c:) ~P(p+A—Wd—p—1)2 sm[u m2]{[P”’1,z<cos¢+)+r"2,,z(—cos¢+)1(sin¢+)3”-*
0

+ [P275lcos @ )+ P2 TA(— cosrp_)](smw_)’”“}-
A +u>l

cos[u W Z{1P227A 08 0,)— P2TA(— co8 9., )]fsn 9, 22

f de 4=\, (@t _ bW, let) = — D+ 4 — WA —p— 1) 2

+sgnlc — b)[ P2 (cos g ) — Pi” Thlcosg_)](sin@_f?*},
a>b+c, cosg, =|btecl/a, sing, =V~ [b+c[/a.
A+u>0

r dtt* =1 (@t W_y bt W _pfet) = % rA+p— l)sin[(i + 4) %]{(sinh v, P ¥, (coth v, ) + (sinh v_)' ~*P ;7% (coth v_)} .

-
A+p>1
J- dt t* =T (@t W_, bt Uy olet) = __\/b—cr(,l +/,t—l)cos[(l +,U)—]{(s1nhv+)’ P # (cothv,) + sgnlc — b)(sinhv_)' ~*P 7 #,(cothv_)},
-
a<lc—b|, coshv, =|btcl/a, sinhv, =J[b+c*—a’/a.
A+p>0

[ 2 deg, oty

—a! . ], . l—ip—p o , A P P
= e 1"(;4+,{—1)[—sm[(y+/l)7](smhv+) P cothv, )+ TA—p l}Jﬁsxn[(A p)z](sm:p_)

X{P2(cos @) + P4 —cow_)}] :

A+pu>1
[ argian_soeisen)
0

—_“l_l — T lisi 1—ip —u _ oy : ERPRYLA 3/2-4
= " rA+pu l)[cos[(,u+/{)2](smhv+) P #(cothv,)+sgnic—b)" A —p 1)Jﬁsm[(,1 ,u)2](sm¢_)

X{Pi/iT/é(cos ?-) _Ps/z l/z( —cos ?—)}] s

bte>a>|b—c|
coshv, =€, iy, - EEF—a cos¢_=Jl’:_C[, sinq,_:_l__l_\“’—:"c,

a a
A+u>0
J_1palezV _yo(b2) F dtt* =32 dt I (at W, (|b + eclt
= (INZmbez)[J_, llc + b )2We + B o watV g1l )
A—3/2
+J_plle —b|2N|c - b ] (7.3) = : 0: 172
and m|b+ el
><l"((;t +A)/ ) ((u+ A —1)/2)
Jyjale2l _y pofbz) = (1/\2mbez) [T, a(c + b )zWe + b T(p+1)
+sgn(c—b).l+,/2(|c—b|zN|c—b|]. XCOS[[/J.-{-/{-—i:Fl]l]
Function f, of Eq. (3.2) is now simpler since 2202
® xF('u_ﬂ M__L ﬂ+1._az__)
f t2=32 gt J (atV o 1 (|b + |t )dt N2 "2 2’ b+ ec)?)’
0
7.4
is well defined fora<|b+ec|,e= +1,and 74
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_[) drt* =32 (@t W 1 ,,(]b + eclt)

_ 21—3/2'b+6Cl;t1/2
- A—1/2+1/2

a

FA+p—1+0/2)0 (A —p—1+1)/2)
T'(1+1/2)

3 ] s
eli-3 13
°°s[( 2t 7H)3

A—pu—~1+41
2 L

X

»

) F (/1+,u;—1j;1

€ |b+ ec|2)

1 7.5
t- e (7.5)

fora>|b+c|, e= +1.

For the sake of completeness, we may replace the hy-
pergeometric functions , F; by the associated Legendre
functions.

Ifa < |c — b |, we use the formula (Ref. 14, p. 53) valid
for0<Z <1

2 Fila,a +4,v.2Z)
= 2= ')z - —
-t \NT=Z), (1.6)

fora> |c — b|or|c + b |, weusetheformulas(Ref. 14, pp. 53
and 54)

2 Fila, B4,Z)
=(INmC e+ ) B+

Z)(l/Z)(l/2 - —f)

YA )(y - 1 —2a)/2

X2a+ﬂ—3/2(1 _

X [PL2EEANZ) + PL252A(—NZ)]  (7.78)

and
2F1(¢,B,3,Z)
~(WmZ e —-Jr(B—1})
Xza-}—B—?/Z(l _z)(1/2){3/2~a~8)
X [PY232ANZ) - PY25275(—VZ)] . (1.7b)
For a<|c—b|, we define cosv, = |b+ ec|/a, sinhv,

= (b + ec)* — a’/a, and we get

1/2
l6 ";::L f dtt*=32] (@t , (b + eclt)
A+ 2 - —
e a' F(/i+u)r(/l+y I)
mr  be 2 2

X({sinh v.)! ~*P ;7 #,(cosh v,)
xsin(r/2)[(1 + 1/2 + 4 +ul,
A+p-2

with 1‘('l “L")r(’1 ad 1)2 :

2 2 Jr
=TI +p—1).
For a>b+c, we define cosg, =

=\a® — |b + ec|?/a, and get

(7.8)

Ib + €c|/a, sing,
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'b‘+‘5"|1/2 Jm 132
Breel "=y ay, (b +ecl)
V2mbe Jo #
at—4
= ——217- bcl"(,u+/l—l)]"(/l——,u——l)

X (sin @ )¥2 4 [P Z2iAlcos @)
—€P2 5 —cos ,)]
Xcos([A —p — (1 F 1)/2]17/2) . (7.9)
All the results of this section are summarized in Table III.

VIil. CONCLUSION

Some generalizations may be obtained by differenti-
ation with respect to parameters a, b, and ¢. For example,

f t4, o (at W, (bt H (et )dr
0

= (ﬁ - i) f: t2= T (at W, (bt H Det )t .

a da

We can thus reach contiguous integrals, a consequence of
contiguity relations both for F, and , F, functions.

Another possible generalization is the calculation of the
integral

J ) t* =K, (at)K, (bt M, (ct)dt
0

—|ul—=1v|+p)>0, Rela+b)>

by using again analytical continuation for the same factori-
zation cases. The F, function has then the same variables

a*/c*, — b?/c? as in the initial integral (1.1). When a, b,
and c are real, no restrictions are necessary in the parameter
space. Some simple examples are given in the following pa-
per.’°

|Im ¢|

'W. N. Bailey, Proc. London Math, Soc. 40, 37 (1936).

2p, Appell and J. Kampe de Feriet, Fonctions hypergeometriques et hyper-
sphériques (Gauthier-Villars, Paris, 1926).

*The most recent works on analytical continuation of F, and its mono-
dromy group can be found in J. Kaneko, Tokyo J. Math. 4, 35{1981); and
K. Takano, Funkcial. Ekvac. 23, 97 (1980).

‘A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher
Transcendental Functions, Bateman Manuscript project {McGraw-Hill,
New York, 1953), Vol. 1, p. 240.

5A. Gervois and H. Navelet, J. Math. Phys. 25, 3350 (1984).

°I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series and Products
(Academic, New York, 1965), p. 694 and 695.

"W. N. Bailey, Q. J. Math. 4, 305 (1933); W. N. Bailey, Q. J. Math. 5, 291
(1934).

8Reference 6, p. 1055, Formula 9; and Ref. 2, p. 23.

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Table of
Integral Transforms, Bateman Manuscript project (McGraw-Hill, New
York, 1954}, Vol. 1.

1A, Gervois and H. Navelet, J. Math. Phys. 26, 645 (1985).

'Reference 4, p. 144.

2R eference 6, p. 695, Formula 6.578.8, but the sign of the result for the
triangle case is incorrect.

R, Askey, T. H. Koornwinder, and M. Rahman, “An Integral of Products
of Ultraspherical Functions and a g-extension,” to appear in J. London
Math. Soc.

14W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for
the Special Functions of Mathematical Physics (Springer-Verlag, Berlin,

1966), p. 164. In Ref. 6, p. 1006, Formula 8.736.7, you have to replace in
the rhs cos u by cos vr.

135G, Petiau, La Théorie des fonctions de Bessel (CNRS, Paris, 1955), p. 204.
See also Ref. 6.
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Integrals of some three Bessel functions and Legendre functions. Il
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Integrals of three Bessel functions of the form §&°J,, (at M, (bt JH )(ct )dt are calculated when
14,v,0,a,b, and c are arbitrary real numbers. For this, use is made of the factorization of the Appell
function F, in two hypergeometric functions. Further simplifications occur if 4 = + v or

p = £ 1/2. New results are given, mainly when real a, b, and ¢ satisfy the inequalities

|a — b | <c <a + b, which correspond to most physical situations.

I. INTRODUCTION

The integral (1%~ 'J,, (at W, (bt )K, (ct )dt was given by
Bailey' in terms of the Appell F, function® provided
Re(d +u+v+p)>0,Red <5/2,andRe(c + ia + ib)>0.
It can be extended to the calculation of
Seth =1, (at W, (bt W, (ct )dt, where a, b, and c are real pa-
rameters and ¢ > b + a, which corresponds to the domain of
convergence of the double series for F,. This expression is
not very tractable and the problem remains open when
|a —b|<c<a+b, a case encountered in most physical
situations.

Ina companion paper denoted by I {see Ref. 3), we claim
that, for real A,u,v,p and real a,b, and ¢ the expression

L t* = (at W, (bt )H Vet )dt
a*b”
('}’ _ I'C)'{ +pu+v

LA +p+v+pl/) L (A +p+v—p)2)

= lim2* !
y—0*

Fe+1)r'iv+1)
XF4(A+,u+V+p’i+/L+v—p;
2 2
2 b2
v —2 ) L1
“ €+ e+ P (-0
with
H;,”(z) =Jp(z) + ti(z) (1.2)
and
a+b<e, A<5/2, A+p+v—|p|>0, (1.3)

has an analytical continuation when the function F, factor-
izes into products of hyper geometric functions of one vari-
able only.

It is still probably true when A,u,v,0 are complex
numbers but we did not try to look at it. We have listed all the
known factorizations of F,. All but one correspond to either
one of the two changes of variables

@/ = —x/(1 —x)(1 —y),

bt = —y/(1 —y)1 —x) (1.4)
or

@/F=X(1-7Y), b¥P=Y(1-X)

with the involutive correspondence®

(1.5)

* Chercheur CNRS.
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X= —x/1—-x), Y= —y/(1—y) (1.6)

All the factorization cases for the change of variable
(1.4) were studied in I. In the present paper, we are interested
by the transformation which appears in the factorization for-
mula**

FlaBy.y;a’/c’b?/c?) = F\aBy X ):FiaBy;Y) (17)
whena+8 +1=y+7,1ie,
A=1 (1.8)

In spite of condition (1.8), factorization (1.7) is not too
restrictive as u,v,p remain arbitrary. By derivation, for ex-
ample, we may—at least formally—calculate integrals like

L t'= 1, (at W, (bt \H Vet ),

where / is a positive integer; it is simply a consequence of
contiguity relations for the functions F, and ,F;.

This paper is organized in the following way. In Sec. II,
werecall results for X and Y (Eq. 1.5) and discuss the general
expression for A=1 and any jpuwvp (and
1+ 4+ v—|p|>0). Function ,F, reduces to Legendre
functions when u,v,p satisfy an additional condition. We
study the casez = 4 v (Sec. III) and the casep = + § (Sec.
IV) both for arbitrary real a,b,c and when a = b. Condition
p = %1} corresponds to the Fourier transform of ¢ ~!/2
XJ, (at W, (bt ) which is not tabulated in the usual textbooks.
Lastly, in the Sec. V, we indicate some possible generaliza-
tions (i) by analytical continuation [integral
S& K, (at)K, (bt )H V(ct )dt ] and (ii) by derivation.

The most general result is Eqs. (2.9) and (2.10). Specific
cases are given in Tables I and II and formulas (5.2), (5.4),
(5.5), and (5.7).

Il. GENERAL FORMULAS

A.Pair X(1 — Y) =a2/c2, Y(1 — X) = b?/c?
We recall briefly the results stated in I; X is a solution of

X4+ X(b2—c*—aY)+d*>=0, 2.1)
where the discriminant
S=[l@+b)—-c*lla—b)—c?]
=a*+b*+c* —2a°h% — 202 — 2% (2.2)

is positive when ¢ >a + b or ¢ < |a — b | and negative when
|@a — b| <c<a + b (triangle inequalities). We get ¥ by ex-
changing a and b:

© 1985 American Institute of Physics 645



X = (c2 +a*—b% 4 ‘/3)/2(;2’ X=sgnla—b )(a/c)esgn(a - b)ub’

L . (2.3) Y = sgn(b — a)(b /c)e’="® e, (2.6)
Y=(+b>—d £6)/2, where sgnz= + 1 (resp. — 1,0) when ¢>0 (resp. ¢<0,
where X and Y correspond to the same determinationof y§. ¢=0). ~ When  a>b, u,=u,+u,a®=>b%+c?
This determination was found? to be +2bccoshu,, and X>1, Y<O0; similar formulas hold
. when b > a leadingto X <O and ¥> 1.

-8, if c>a+b, We shall also need X'(1—Y')= —d%/c?
—i(—96), if [a—b|<c<a+b, Y'(1—X')= —b?/c% already studied by Bailey.! No

J3, if O<c<la—b], problem of determination occurs then and for every a,b,¢ the

N ) unique solution reads {c>— — ¢?),
where { denotes the positive square root. Introducing hy-

perbolic or trigonometric angles,® we rewrite X, Y for the X'=(+b%—a> &)
three cases in the following ways. Y =(+a*—b%—8)23 2.7)
(i) e>a+b, X=(a/cJe ™, Y=(b/ce “, where8'’ = [¢® + (@ + b )[c¢* + (a — b )?]is always positive.
and 0<X,Y<1, @=b2+c?— 2bccoshu,, With a hyperbolic parametrization
b?=a*+ ¢* — 2accosh u,. V&' = 2ac cosh v, = 2bc cosh v,,
(2.4) ¢’ + b2 —a® = 2acsinh v,,
(ii) l@a—b|<c<a+b, ¢ +a*—b?=2bcsinhv,
=(a/cle” ™, Y=(b/cle ¥, we rewrite X', Y’ as
a*=b?%+c*— 2bccos @, X'= —(alc)e”™, Y' = —(b/cje ™.
b2 =c* 4 a® — 2ac cos @, (2.5) N.B. In the case a = b, we get
and *=0b%+a*—2abcosg.. Note that 1 — Y=X*, X=Y={{1-V1—4d’/c), when c>2q,
where X * denotes the complex conjugate of X. X=Y=|1-if4a’/c* — 1), c<2a,
(iii) O<c<la—b], X' =Y =)1-Jy1+4%), Vac

B. General formula

From (1.1) and (1.7) we get the general formula

f T, at W, (bt H Vet )t = 58T +p+v+pVA L1 +p+v—pV2) isororo-u-
o 1Tcl+[l+v

T+ 1) (v +1)
1 1 — 1 1
A I I (RS y W EVET I

(2.8)

where X, Y are given by (2.3)—(2.6).

We may note the following.

(i) Both ,F, functions have imaginary parts when |a — b | <c <a + b. The symmetry in the parameters a,b,c on one hand
and indices z,v,p on the other hand is by no means trivial though it surely derives from the analytical continuation for F, (see
Ref. 2): Fy(-;2,2')>Fy(-2/7,1/7), i.e., Fy(..;a*/c*b*/c)—F(...;a%/b*c*/b?) or equivalently, ,F,(..;X )—,F,(...,1 — X) or
oFy(..;1 — 1/X) (see Ref. 7).

(ii) When ¢ >a + b,0< X < 1, 0 < Y < 1; both functions ,F, are defined through a real series, hence are real; in that case,
the separation between real and imaginary parts in (2.8) is obvious.

(iii) Whenc < |a — & |, and for example, a > b, we get X > 1 and ¥ < 0(Sec. IT A). The function ,F(...;Y )isreal when b > c as

— 1 < Y <0;in all other cases the analytical continuation of ,F,(...; Y ) and ,F,(...;X ) has an imaginary part. Rewriting (2.8) and
using the “angles” u and @ of Sec. I A, we get, providedu +v+p> — 1,

L(ct) __ @b I(l+p+v+p/L(L+p+v—p)2)
fJ(ath(bt){Y(t)] — Tutl Thtl x1I, (2.9)
cos(m/2)p — pt — v) 1+,u+v+p 1+u+v—p a —u,
{81n(1r/2)(p p—v)}xzp‘( 2 2 e+ lie )

XZFI(1+#;_V+p 1+‘U;V P, V+1%e ""), c>a+b,
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Im

=[Re}Xe—i(n/z)(p—u~v)2F(1+I‘+V+P l+u+v— P

2

l+u+v+p 1+,u+v——p‘v+1.b
2 ’ 2 ’

XzFl(

7—e'

p+12e” i”"’)
c

"‘”“), la—bl<c<a+b,

(2.10)

={Re}xe—i(ﬂ/ﬂ(p—y-—»ﬂzp(I+Iu+v+p l+pu+v— P

Im 2

1+,u+v+p I+pu+v—p,
2 2

X2F1(

v+ 1; — —e

u+ 1—-—e—“")
¢

"""), a>bh and c<a— b,

and a similar formula holds when b > @ and ¢ < b — a {exchange b and a and g and v). No real simplification occurs in the case

a=h.

Remark: The same work can be done with Bailey’s result and X', Y’ pair as the function F, again factorizes. To our
knowledge, the expression in terms of the ,F, function does not appear in tables of Ref. 8. We have

ij# (@t )], (bt )K ,(ct )dt
o

cl+u+v

Tu+1) Tv+1)

l+p+v+
sz‘( ﬂz & 2

ifu4+v—|p|>1

HLCASEu= +v

A. General formulas for a=b

Formula (2.8) simplifies when the indices p,v,p satisfy
an additional condition. The simplest case corresponds to
= + v. We first notice that

2F1(1+2/t+p 1+2ﬂ—p;1+'u;X)

2 2
1—p 1
= (=) (L IR ),
where {1 — X}~ # may introduce a phase factor and the de-

termination of the power function corresponds to
larg(l — X)| <.
Now, we investigate the following three cases.
fije>a+b As0<X, Y<1,

1—p 14p )

——r " TFg .

2Fl( 2 2 + X
=(1—-XyX ~#2r(1 +pP g E (1 —2X),

whence formulas

2F1(1+2;+p’ 1+2;_p;y+1;X)

142 1 -
szl( +é‘+p, +2§‘ p;y+1;Y)

=2+ 2) e - 2x)

XP %y ,(1—2Y),
and (3.1)

- ) C+pl 5 )
—i1 ; 1w Y
2t ik (T2 =i -
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@b D(1+p+v+pV/) (1 +ptv—pV2) o(l4ptvep l+utv—p
2F

a v
] +1,_"_e b)
2 2 i ¢

btptv=p ., g, b, U“)’
[

=ru+ywu—m693;&mu—zn

XPE_ (1 —2Y),

where the P, are the Legendre functions on the cut and are
real because — 1 <(1 —2X), (1 —2Y )< 1. We get then

J-me (@t W, (bt \H Vit \dt
0
_ (A +2u+p/2) I (1 + 21 —p)/2)
wc
Xe~(mHe-2mp Sk, (1 —2X)
XP oyl —2Y), (3.2)

JWJ# (@t _ (bt \H Vct )dt
0
I'((1+p)2) I ((1 —p)/2)

e
Xe_i”p/zp(;fn/z(l - ZX)P’(;:— 1)/2(1 —2Y),

where, except for the phases ¢ ~ /2 =21) o —imp/2 4] other
factors are real.

(i) 0 <c < |a — b | and, for example, a > b. Replacing ¢

by ¢ + i where 77 is small and positive, it is easy to see that X

changes to X — i0 (small negative imaginary part). As X> 1

rewrite the power function as (1 -—X)~#

e‘"”‘(X I)"#and (—X)~# =e~ "™(X)"*,

( ]+”1+ ,X)
=T (1 4 p)X — 1p2X —#2p
( —p 1+"]'l-;- Y)

F{l+pf(l -YP2(—-Y)~#2P o Enll —2Y),

(;flj/z(l - ZX)’
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where the P, are now the Legendre functions defined in Ref.
9 and the arguments X = 1 — 2X, Y =1 — 2Y are such that
Y>1 [whence P ;% 1)/2(Y) is real] and X < — 1 [whence
) (X) has an imaginary part]. By taking care of the
phase factors

142 1420 —
(LA IE WPy iy )

x2F1(1+2;‘+P 1+2§‘ p,u+lY)

=e ™1 4 u)ab /c*)~*
XPoEy (1 —2X)P 2y (1 —2Y),

J‘(I;p lzp 1+””X)

321500

=T (1+p(1—p)b/a)

XPoEy (1 =2X)PJEy (1 —2Y), (3.3)
whence the final result
j J, at\,(bt)H Dt dt
0
_ Tl +2u+p)/2) (1 +2u—p)/2)
e
Xe= 2P k(1 —2X )Pk 5 (1 —2Y),
J J (atJ _ (bt \H ct )t
0
_T(1+p2) I'((1—-p)V2)
e
Xe“”P/zPUjf,,/z(l —2X)PY,_ (1 =2Y), (3.4)

which holds both for a > b and @ < . We recall that the P,
with a negative real argument is not real and may be calculat-
ed using, for example, the formula®

P4 —z) =T ™P(z) — (2/me ™™ sin[m{v + 1)1 Q% (),
where now the P, Q in the rhs are real.

(iii) |@a — b | <c<a+b. In that case Im X, Im Y <0;
thus Im(1 — X)> 0, Im(1 — ¥)> 0 and with the correct de-
termination of the power function

l—p 14p )

F, —51 ;

2 1( > 5 + X
=1 +p)l —XPH—-X)"*2P (1 - 2X),
l—p 1+p )

F|—- —51+ Y

2 1( 2 > H

=C(1+p1 =YX =Y) Pt ,(1 -2Y),
where the P, are again the Legendre functions.

We get again formulas (3.3) with the same phase factor
¢~ ™ which occurs because the real positive variables are
X(1—Y) and Y(1—X) [and not —X(1—-7Y) and

— Y{(1 — X)]. Formulas (3.4) then hold also when |a — b |
<c¢ <a+ b though, of course, none of the functions P, are
now real.

Results are reported in Table I (lines 1 to 6) for all cases.
The variables X, ¥ have no very interesting meaning in terms
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of the angles and hyperbolic angles ¢ and u except when
a=>b (see below}. In lines 5 and 6, we give the integrals
$&J,J . K, which are already known' in terms of the F,
function but not in this simple factorized form except when
a = b (see Ref. 8). For the sake of completeness, we give in

line 7 f5 K, (at )K,, (bt M, (ct ), which will be calculated in Sec.
V (Eq. 5.2).

B.Casea=>»

The results simplify when @ = b and some were already
known in case ¢ > 2a (for examples, see Ref. 8, p. 675 and
following). They are reported in Table II, lines 1 to 4. The
difficulty comes in when ¢ <2a, as now the argument
X =Y = iJ4a®/c* — 1 is pure imaginary and we have to go
back to real arguments for practical purposes. This can be
done by using Whipple’s formula,'® which gives in our case,
setting sinp =c¢/2a, O<@<n/2 (2p=¢,.),

Pu_;f 12 (i cot @)

2 e + inp/2 — in/4 Q
= _[=sin P2, (cos i0),
- ¢ Tl + 2z —p)/2) P02 (cos @ — i0)

where the argument lies under the real axis.
Now, we express Q in terms of the functions P,Q on the
cut'!

e™*Q ~+%(cos ¢ — i0)
= Q ;7 **(cos @) + i(m/2)P ; **(cos ).
Recalling that @ = @ /2, some easy manipulations give

f J2(at)H Vet )dt
0

_ i T((1+2u+p)2)
7a T((1+ 2u — p)/2)

2
[Q e, (cos—) + 1—2—P P2, (cos 2" )]

(3.5a)

and

wa“ (@t W _ ,(at)H Dct )dt

_ i I({(1+p1/2) I ((1—p)/2)
ma T'(142u —p)/2) T (1 - 21 — p)/2)

P P
[t e )+'7”u (o)

fottale ) grrne)
ol <1. (3.5b)

The final expression is given in Table II, lines 5 and 6. For
p =1, the integral §5°J, (at)}J _,(at WJ,(ct)dt exists and is
calculated by taking the limit p—1 of the real part of (3.5b).
We get

f °°J,, (at W _ . (at Vet )dt

= (1/mpc)[sin pr — sin p(r — @.)], (3.6)
which can be checked with Sec. IV of 1.
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TABLE I. Integrals

J’J# (et (bt W, (ct)dt and JJ,‘ {at\J ., (b1)Y, (ct)dt.
Integral

J‘Jﬂ (at W, (bt)K (et dt

calculated by Bailey' is given for completeness. The Pand Q functions are the Legendre functions.

” Jolet)] D14 2u + p)/ AT ((1 + 26 — p)/2) [eos(m/2) 2 —p)) , _, @ —u) o b
J; J#(at)‘,u(b’)[yp (C!)] dt"_ e {sm(n‘/Z) (2[!,"-.0)]1’(‘,’”/2 (l—-‘?"c—e )P(pfl)/Z (1 _Z“C_e );

LU+ 2u +p/ 2L ({1 + 22 — p)/2) G{e) {e“"’"’z"’g;fwz (l - Zie*"’) Potun (1 + Zie"““),0<c<fa —b|
e m ¢ c
= Lyl + 2 +p)/27if“1 + 23— p)/2) G-::) [e“"'rp”zp(;fn/z (1 —Z-Z—e‘iw“) Po s (1 - Z%E_f%)},

LU+ pVDII =pl2) (e85 70/2 1 o, (1=22e-) Py, (1-2267%)

J, (ct)}
dt= e —sinmps2) " w2 c c

Lwlﬂ(at).l_“(bt) {y )

LAV =) (R fommpin, (1222 ) 2y (14220

me
D1+ 020 (1 = p)/2) (ReY [ 2y - a —ip b -
-~ ( 4 ﬂc( ﬂ) ) Im e p/ZPLpf!)ﬂ 1—'278 P P‘éuwz 1—-2?8 P,
ile>a+b 2?=b? 4 * —2bccoshu,, b?=a*+¢*—2accoshu,, c¢*=a*>+b*+2abcoshu,

and a>b (exchange of @ and b and exchange p<«» —pu in the case J,J _, if b>a)
a?= b4 4+ 2bccoshu,, b®=a*+c*—2accoshu,, ¢ =a>+b%-—2abcoshu,
Fa=birc? ~2ccosp,, bP=a 4+ —2accosg,, F=da*+b*—2abcosg,

([ij0<c«la—b|

iiijla — bl <c<a+b

f Joat\, (bt )K, (et )dt = r‘““““”/zz’f«‘”"“f”/’” Potun (1 +2%e’"“) Pt (1+2%e“"“)
0

r«l "Lp}/zz)f“! "P)/Z) P(;_‘.‘n/z (1 +2—‘:“€7%)P";,,_”/2 (1 +2_i_e—0a)

J'WJ,, (@t _, (b1)K, (ct)dt =

- 1 F((1 426 +p1/2) sime 1 @\ b, . .
J;K“(atmﬂ(btvp(ct)dt=??%ﬁ-zz—:~ﬁ;—/{;-ez "Q,pf,w(l+2?e ")Qwi‘,),z(l+2~c—e ), 2+ b? @ =2acsinhv,, ¢+ a®—bh?=2bcsinhy,

{il
142u+p>0, forJ,
1+ 2u — |p|>0, for ¥,.

{ii} with

(i)

i)
1+4+p>0, for J,,

(i) with 1—[p|>0, for Y,.

(i)

with 1 + 2u — |p| >0
with 1 — [p| >0

with 1 +p ~2|u|>0




+ vand a = b. Integrals §J,(at}J . ,(at ), (ct)dt and §J,(az)/, ,(at)Y,(ct)dt. Formulas were already known for ¢ > 2a (See Ref. 8). The others are new. The P and Q are again the Legendre

TABLEIL
functions.
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w2 (\ll""4a/z )]2

— 8
p—

[e

+ 24+ PV2) i

N
QU
+
&
|
<
Al

1

J.”K (at W, (ct)dt

IV.Casep= +}
We can restrict ourselves to p= +4 as H" ,
= —iH'Y,. We get the sine (and cosine) Fourier transforms

of J (atW,(bt)//t which are not listed in the usual
books.>?

We use the definitions'?
oFi(aa+ Lviz)
=27 lr(y)z(l - y}/Z(l _ z)(y— 1-2a)/2
XP3?, (11 =2), (4.1a)
which is valid everywhere except when z is real and z <0 or

z>1.
For X <0, it becomes

2Fl(a’a + ,Y,X)
— 27— lr(y)( __X)(l —y)/Z(l _X)(y— 1—2aj)/2
Pl (IT=X). (4.1b)

We shall need a third possibility X > 1 (actually X stands for
X — i0 with X > 1). Using (3.1a) we have

Fi(aa + Ly X — i0)
= 27’— 'I"(}/)X“ —y)/Z(X__ 1)(7— 1—2aj)/2
X el —1=2apl -7 (—i(1/yX—1+1i0)),

where the variable is on the imaginary axis. Using again the
Whipple formula,'® we get a Legendre function of

1/yX + i0,
Py [ —i(/ X =1+i0)]
iere — 7 2 4,4(X—1)V4
— e ___e”’ —_—
2y —2a—1) X

o — 1 .
XQ1=2e 1/2(} + tO)

and Q near the cut is replaced by functions on the cut

- — 1 _
Q12 1/2(3_'_’0)

— e[311r/2)1y 2a — 1/2)[Q7 2a2— 1/2( 1 )

vX
A 20— 1
-0 ()

whence
Fi(a.a + Ly X —i0)

__ 2 ry Xu—r)/z
r'2y—2a—1)
X——l 1/4
X—— 1 (r—l——Za)/z( )
X{ ) X

1
X @/ D2y — 4o — 1) [Q r= 372- 1/2( )
X

~igrn ()| o (410

Going back to our original problem, we rewrite the general
formula (2.8) whenp =}
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[[Iuta i s errar
#b* [ +v+ 1220 +v+3/2/2)
Tty T+ ) w+1)

e~ T2~ =)

3/2.
XzFl(’u+V2+ 1/2 p-i—vz—{— / +1,X)
szl(;u+v2+ 1/2’p+v2+3/2’ +1Y) 4.2)

which we express in terms of the Legendre functions in the
three cases.
{{) When ¢ >a + b: 0<X,Y < 1. Then, from {4.1a)

(X LF (s Y)
=2+"Cu+ Y (v + )X —#2
X(} — Y)—,u/ZY —v/2(1 _X)—v/z

" (1-)&'1)(1-1’)‘””—_“‘”( 11-X)

1
XP —1/2( )’
1-Y

f&wmww&ww

W+ Pl+v+ 12/ + v+ 3/2)/2)
me WJI=X)1=7)

XPJ ), (

=)
Jgi=—x/)“"\yi=v/

asl — X =(b/cle", 1 — Y=(a/cle”,and u, = u, + u,, we

get

f T (at (bt )[ Y‘l’;‘(“ ))]dt

W+ “(“ + uy)/4

T Je*ab
xl*(" + v2+ 1/2)r(,u + v2+ 3/2)

\/Z _uﬂ)P“ 12 (\/% e_w) :

XPt 1/2(
(cos(ﬂ'/Z)(,u +v— 1/2)) (u, +u, =u,), (4.3a)

sin{7/2){u + v — 1/2)
where the arguments in functions Pare real and larger than 1
so that the P are real.
(fi} |a — b | < ¢ <a -+ b: Taking care of all the phases and
using (4.7a) again, as Im X <0, Im Y <0, we get similarly

fo "t )J,,(bt){l"’z(“)}dt

Y, alet)
¥+ 1
7 Jc*Jab
Xr(#-*—v—i- 1/2)1.,(;&-{»7-%—3/2)
2 2

X (;:) {e — i/ N, + 5l e~ {22 —p—v)
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)

(4.3b)

C —i c -
X Pv_—# ( —e ‘Pa/z) P ( —e
172 J-; m—1/2 a

({i)0<c < |a — b | and, for example, a > b:
={a/c)e”, X>1 (and actually X stands for
X — i0),
Y= —(b/ce ", Y<O.

The second ,F; function is written explicitly with (4.1b) and
the first ,F, with (4.1c). We get finally

s X Fy(5Y)
— 22+ M+ Wiv+ 1) l(__y}—vﬂ
Tp—v+1/2) T
X{I—Y) (y+l/21/2P-—vV2( 1 )
1-Y

cx gy ma{E 1)

X
) 1 s 1
i —vl - ."'_P,_,—_.V 28— |
e [Q“”{¢f) 2 ”(¢fﬂ
whence
- 7
L J(at V], (bt ){ v 22({2’[ ))}dt
Y a4 v+ V272 + v+ 3/2)/2)
- Thu—v+172)

\/'(Itn){ o~ Hm/201/2 4+ 3
XP_VI/Z(J-C‘ “'/2)
a

—y 4 —u,,/z) LT
X _ — e f—
[Qu l/Z( a 2

)(P‘u—_"m( ie—uyz)]
a

(ua - ub = uc) a >b’ (4-30)

and a similar formula when b > a, by exchanginga and b, u
and v.

In the derivation, many phases appear and we have pre-
ferred to verify these formulas for v = 1/2 as the integrals

[l

are known'?. Part of the proof is sketched in Appendix A.

V. POSSIBLE GENERALIZATIONS ,
We investigate two kinds of generalizations.

A. Analytical continuation
From the identity
(2 sin mu)/7K , (at)
my.lz‘]—“( ——m-.lzat) eivs;ulsz (e-— x‘vrp/Zat )’ (5.1)

we can calculate the integral
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rtﬂ- 'K, (at K., (bt \H Vet \dt

in terms of the Appell function

A A —
F4( +,u;—v+p, +y—2|-v Loyt
az b2
o cz)’

at least when
Refa +b)> |Imc].

For A = 1, F, factorizes into two ,F, functions; the same
work as above may be done with the pair X'(1—Y’)
= —a*/AY'(1 - X')= — b?*/c* whichwaspreviouslyin-
troduced by Bailey' for the integral §&J, (at M, (bt )K , (ct )dt,
the main results being indicated in Sec. IT A. In that case, the
analytical continuation for real a,b,c, is straightforward; we
have

X' =(2+b*—a>—&)2,
Y' =(*4+a*—b2—§)2P
6! — (62 + b2 _a2)2 +4a2c2
=[+@+bP1[+@—b)],
and X', Y’ are real negative for every real value of a,b,c.
The general formula is a lengthy sum which is of no use
here. It reduces drastically when u = v (which gives the

sameresultasy = —v,as K, = K _ ). After some tedious
manipulations we get

fwK u(at)K, (bt (ct )dt

AT+ 402) o oy
T e T((1=2u+p)/2) Q=21 —2X7)

XQ ¥yl —2Y)e™, (5.2)
where the Q7e " are real as 1 —2X’, 1 —2¥"'> 1. This
formula is a generalization of that of Ref. 8, page 668 (for-
mula 6.513.5) for a = b. The expression for the other integral

K, (at)K, (b)Y, (ct )t is more complicated and we do not
give it here.

B. Derivation

As we pointed out in the Introduction, we may obtain
the values of the integrals when A is raised by one or more
units, by derivation with respect to one of the parameters
a,b,c. It is always theoretically possible, but it is interesting
only in simple cases.

For example, one can verify easily that

J.th,‘ (@t M, lat W, (et )dt

- (% _ %72,‘) L "I at\ (e,

fthi(at W, (ct )dt

1 d\(~
= (B + DY rzan, e
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JthM (@tV, . (at)K, (ct)dt

7 1 d ®
_ (7 _ 7_(.1_;) fo J2(ar)K, (et )dt,

f "2t K, (ct )dt (5.3)

+1 d\ [~
- - (& + Y[ Bk, e

JwtK Zlat W, (ct)dt

1 a\(~
= (% + ;E)J; Kilat\, , (ct)d,

and

fwtKy (@)K, , (atV,(ct)dt

= (% - % %)J:K 2(at M, (ct)dt.

The integrals on the rhs are known and tabulated in Table I1.
Those on the lhs are calculated using

(= 1V 2PYe) = v+l — o+ INFF = TP

— puzPi(z)
= vzP4(z) — (u + vIP%_ (2),

(1= LPr) = — vxPi(x) + (v + WL, (x)
dx

=@ +Yv—p+ INT—5"PL~x)
+ pxP%(x),

and identical relations for Q% (z) and Q% (x) (see Ref. 9). The
four last formulas of (5.3) give known results (see Ref. 8),
pages 672-73, formulas 6.522.7-1.2 and 8). The first two
formulas are not tabulated to our knowledge and are new.
They give different results, according whether ¢>2a or
c<2a.

We get

r t,(at W, , (at ), (ct)dt
_2 TB+%+p/2) (l_g)-“

2

A L((—1~2u+p)2) c
- 4a’
XPg¥ ( 1— =
—— 4a’
XP(pfl)/lz( 1_’2‘2_ ’

c>2a,
_ 1 T(@+2%u+p)2) (1__ci)—v2
27a* T'((— 1 —2u +p)/2) 4q*

X[P—P/2 ( 1— i
p+1/2 4(12

xXQ —p/2 1— C_z.
u—172 402
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2
_ C

2 ¢
XQ;f/l/z ( - — }’
c<2a,
and
f 2 (at W, (ct)dt
0

2 (242 +p)/2) (1 B é,ﬁ)——xfz
¢ T'((—2u+p)2) z

_ 44’
xP,,,;'( - ==

- 4a’
xPp/Z”—l( 1 - CEY A
¢
c>2a,

_ 1 I(2+%+p)/?) (1 _ _<z_)
2ma* I'((—2u +p)/2) 4q*
xXA{P o, P 70" u)

R PRy ) I () 8

u=+\1—c%/4a c<2a.

Another application is the derivation of the integral

{3.5)

e, (at) T, (bt)Y, , (ct)dt

_ (L"—_l _ i)
I de

waJM (@t W, (b)Y, , ,_ (ct)dt, (5.6)

which could not be calculated with the methods of Refs. 3
and 6, while &/, J.J, . ,.ftJ,J J,_,,and (I, J Y, _,
were determined. The details of the calculation are reported
in Appendix B. We have

et (at W, (b)Y, , (ct)dt
@b/ 2ac* My [Tu + v/l + W v+ 1j]
= (/A {p.Fiu + v, 1v + 1,Y)
+ v, F(u + v, L + LX)},
c>a+b,
= (1/4 )Im{u,F,([u + v,1;v + 1,Y)
+vFip + vl + LX)},
la—bl<e<ca+b,
= — W/A)[,Fk + vy + 1Y)
—SFp+vlv+1—X)] —(cosmv/4)
vy VY Du+ Yy + 1)
a*b” Ty +v)
a>b and c<a—b

Xe

¥

and a similar result for b > a, ¢ <b — a (exchange of 1 and v
and @ and b). We have set

24 =absinhu,, 24 =absing,. (5.8)
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APPENDIX A: CHECK OF FORMULAS (4.3) FORp =}

We give only verification forc<|a — b |,a> b, i.e., for
formula (4.3¢c):

1= [ " ulat b e

o
_ 1 J“” Jp{az){e~i(b—cif_e"(*"+"3‘},
ﬁ\[b_E 0 t

From Ref. 12, we get
I= (l/ﬂﬂ\ﬁ??) [e — ip arcsin[(& — ¢)/al __ eiu arcsin[ (& + c)/a]]
Now, from {4.3c), it reads
2 Ip/2+ /) /2 + 1)
m/ac T I ()

i - - c
e i(m/2)(1 #)P” _‘/12/2( 78“5/2)

o+ 172

I=

with!*
P )

I SN S

C \Imu NT=X

X [(x + AT =2 — (x —~ WT—=x7p],

Q;—Vziz(x)

!t =1 1

2\ 2 4To

X [+ WT=x7)=# 4 (x — T =) #],

and the duplication formula

/2 + Y w/2 + 1)/ p)=ufm/2".
Collecting all these results, we get for the integral

I = (1/mu+be)2 sin u8, [sin w8, — i cos 6]

= (1/mbe) e~ 0~ ) — ghte.+ 01,

where

cos 0, = \c/ae™”?, sin @, = Jc/ae™ "

The equality between the two expressions results from a
straightforward application of the relation

sin{f, + 8,) ={b + ¢)/a.
Forc<la—b|butb>a,

fo 7@\, (b VH ) (et )t

—_ 1 {e—iuw/Z

a “
mube [b——c-{-\/(b—c)z—-az]
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— ex'pfr/Z

[b+c+\/(ZTc)z—ﬁa]p}‘

Formula (4.3c) exchanging @ and b and ¢ and v gives
24V Pu/2+ Y /2 + 1)
mbe r—up)

X "2—8 - i1m/2P o u( ie“a/z)
T b

forA ) greA5)

- ()
mube 2 2

# Iz
— COS (47T (tan%) —i (tan%) sin 11-;;]

_ 1 [e _ ,-,,,,,2( tan a,/2 )"
”#‘/E tan a,/2

— €™/?(tan a,/2 tan a2/2)“],

where

cos a; = Je/b e"”?, cosa,=+c/b e ",

Using tan a = (1 — cos @)/(1 + cos a), it remains to verify
that

( 1 — \e/b e )"2(1 +yc/be” “«/2)"2

14 Je/b e 1Fe/be

a
b Fe+b ?c)z—ai'

This completes the proof.

APPENDIX B: CALCULATION OF
I = sgt), (@), (bY)H), ,(ct)dt

BtV
Starting from Eqs. (2.8){5.6), we rewrite I as
_ iy +v) {p-{-v——l_i)
M+ O)Cv+1)\ ¢ de
a'b”
X ['c;-;;jzﬂ(ﬂ +wl;

b+ WX LR+ vy + 57|

__ ifp+v)  (p+v—1 __4_)
M+ OWrv+1)\ ¢ de
X [@a=#b —*e* VX H1 — X}
X Fip + vl + LX)
XY 1 =YV Fiu+vv+ LY)],

where X,Y are defined in Egs. (2.3}42.6).
Using

;;X“(l — XV P+ vlp + LX)

=pXr- 1 —-Xxy~!
we have now
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[ _ i L+
@+ g+ W v+ 1)

oX 7’

e e, ,1; 1Y

% X(1_x)2 eyt LY)
ay v ]
_———— W1 LX)].
3 Y(I—7) e +v.lip + LX)

We examine the three cases one by one.
(i) c>a+b As X=(a/cle ™ and 2accoshu,
=c?+a*—b? we have dX /dc = — cX(1 — X)/24 and
similarly 3Y/dc= —cY(l — Y)/24, where 6 =44
= 2ab sinh u, = 2bc sinh ¥, = 2ca sinh u,,,
_ ia"b” Ty +v)
T 204ty T+ )v+1)
Xp Folpg + v, v + LY ) + v Filu + v, e + LX),
as 0<X <1, 0<Y <1 both functions ,F, are real and [ is
pure imaginary. We recover the result of Ref. 6

szJﬂ (at W, (bt W, . ,(ct)dt =O.

(i) |a—b|<c<a+b: From X=(a/cle” " and
Y =(b/cle” " we get

Y _icY(1—7)

dc 24

where  — 8 =44 = 2absin @, = 2bcsing, = 2casin g,
and 4 is the area of the triangle with sides of length a,b,c. We
have

_a'b” I +v)
2rAct Y Tip + WHv+ 1)
X [ﬂ 2F|w + V91;V + 1;Y)
+ v File + v, 1u + LX)
As X and Y are complex numbers, the functions ,F, are com-

plex numbers too. We can separate real and imaginary parts
by using the analytical continuation’

JFip + v,y + 1Y)
= — (WuhFip +vlip+ L1 -Y)
v+ 1

iyl )1 vi-#
+—_—“(rw+v) 1-7)

XF{l —pvil — ;1 —Y)
Remembering that 1 — ¥ = X *, the above expression reads

Pl vl 1K)

+ v+ I)F‘ﬂ')(l —Y)"HY Y,
g+

whence as
(apr/cu+v)(1 _ Y)-—yy —Vzei(v‘pa—/"¢7b),
I= | a‘h"Pa—#?’b)_*_ __Z“ a'b” [‘Ul +V)

27A Ar ¢+ D+ O v+ 1)

XTm F( + v, 1 + LX)
or, in a more symmetrical way,
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1 i Tu+v) @b
I = ——cos(vp, — +
d e P T T )

XIm(v ,Fy( + vl + 1,X)
+p Pl + vy + LY)].

Again, we recover®

Jm t,(atV,(btV, ., (ct)dt

1
= ———Cos(vep, — .
An (v@, — L@s,)

(iii)a>b, a—b>c: If

x=2e 1-x=-2
c c

Y= Lo 1_y=Ge

¢ c
X _cX(1—X) dY _c¥(1—7Y)
dc 2 ' dc 24

where again 44 = /§; then
iab” T +v)

" 20 T+ )M (v+ 1)
X [p Fiw + v, ;v + 1Y)
+ vaFy e + vl + LX)

Though X, Y are real, at least one of them, X, has a modulus
greater than 1. Then the term in bracket is not real. As’

Filw +vlp+ 1,X)
= L Fu+viyv+11-X)
v

+ FU"+ 1)1-‘(1/) -—irrv(X_ 1)—v
Tut+v
XoFy(1 = vl — w1 — X))

= L Fu+viyv+11-X)
v

+FW+IW(V)?—iW(X_1)—vX —n
I'p+v)
= _izFl(/;+v,1;v+l;l—X)
v

—im L+ W) T v,

+e -€
rp+v) ab”

2
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and
J= —f T g
2.
ia"b” I'iu+v)

" 274 T+ Y+ 1)
X [Pyl + v, ;v + 1Y)
—pFip + v, v + 151 — X)].
As the real part is known® and reduces to
— (sin wv/2md Je T Ve e,
the term in brackets is real and the imaginary part of I reads
COSTV — vu, — pu a'b” r v
A T nAeT Th +U;);:(v)+ 1)
XplFip +v,Lv + 1Y)
—Fip + vy + L1 - X)],
which is, of course, not symmetrical in g and b.
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From the convergence properties of the expansion of the function @; 7~

'=1F, in powers of the

energy, we successively obtain the expansions of F; and G, as single series of modified Bessel
functions 7, , , , and K5, , , ,, respectively, as well as corresponding asymptotic
approximations of G, for [77|— « . Both repulsive and attractive fields are considered for real and
complex energies as well. The expansion of F; is not new, but its convergence is given a simpler
and corrected proof. The simplest form of the asymptotic approximations obtained for G,, in the
case of a repulsive field and for low positive energies, is compared to an expansion obtained by

Abramowitz.

1. INTRODUCTION AND NOTATION
The usual Coulomb wave functions F, and G, satisfy
the differential equation
2
CERUE N TES ) P
dp’ p P
in which p = kr, while 7 is the Sommerfeld parameter, i.e.,
n=ark, a=2ZZ,eMi > (1.2)
Let us also define the Gamov factor C,(7), the polynomial in
7~2, u;(n), and the functions &, and @, by the equations'~
Cif) =2~
XL+ 1 =g+ 1 +ig)]V2/20 + 1),

(1.1)

(1.3a)
Colm) = {2/ [exp(2my) — 11312, (1.3b)
. 1 !2c2
u(n) = ("])21;_’(-11‘;:;";7—7: i) = (2(12:7-)21)C% I (1.4a)
=149 Y)(1+227731 + >p73), (1.4b)
uoln) = 1, (1.4c)
F, =21+ 1)C,(n)p' T '@, {1.5a)
G, ="' p' 1 @/ 121 + 1NCy(m)]. (1.5b)
Rewriting Eq. (1.1) in terms of the variable
x = (83p)"? = (8ar)'/?, (1.6)
1e., as
2 204+ 1) x> /R
[dix—E+ x‘jix -1 1_2 ) + 167}2](;) =0
(1.7)
the latter equation is then satisfied by the functions
(/221 @, = 29Colm) ™ uy ()~ 2/ %)F, (1.8a)
(/2241 O = Colmuy () *(2/%)G. (1.8b)

For |7| = «, Eq. (1.7) is satisfied by the linear combination
of modified Bessel functions

aIz,+l(x)+bK2,+,(x), (1.9)
and Yost, Wheeler, and Breit>> have proved that
im @, = (x/2)~ %4, 1 (%) (1.10a)

7=
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lim @, = —2(—x/2)"%~'K,,, ,(x). (1.10b)
n=

Since the modified Bessel functions I7,(x) and
(— )" K,(x) satisfy the same differential equation and the

" same recurrence relations, Egs. (1.10) suggest the existence

of an expansion of F, and G, as single series of functions
I, ,.,x) and Ky, ,,.(x), respectively, with
n=0,1,2,... . Such expansions would be particularly useful
for large 7, i.e., for large Z,Z, and/or low energies, since

7 < E =#k*/(2M). (1.11)

Expansions of this type have been given by
Abramowitz,° the one for G, being asymptotic only. Since
Abramowitz’s derivation of these expansions is not entirely
correct, we rederive the expansion of F; in Sec. IT and simul-
taneously obtain the explicit form of the polynomials in 72
entering into the expansion. We obtain these results as a
straightforward application of general properties we have
recently established for the Kuhn-Ham expansion’ of @,.
The same method is then applied in Sec. III to obtain the
corresponding (exact) expansion of G; as a simple series in
K, 14 (%), but still as a double one in I, , , ;(x) with
0<i<n. For large 7 and appropriate values of arg 7, the
asymptotic approximation of G, reduces to a single series in
K, .14 .(x)as it is proved in Sec. IV. This latter result is
compared to that of Abramowitz,® which also appears in the
Handbook of Mathematical Functions.” An appendix gives,
up to n = 9, the polynomials in 2, b!)(y), introduced in
Sec. I1.

Il. EXPANSION OF THE REGULAR FUNCTION

With the notation of Sec. I, the Kuhn—Ham expansion
of &, reads'

0 _3 22 ) x —21—14+2u+4
o= 3 (-rn ¥ pu(%)
=0 i=o 2

XD 41 424 2(X)

(2.1)

where the Bﬂ,’l are polynomials of degree u — A in /. They
satisfy a recurrence relation also given in Ref. 1. The expan-
sion (2.1) is a power series of E, since 7% « E. It is absolutely
and uniformly convergent, both in its dependence on 772
and x considered as complex variables. This property has
been proved in the Appendix of Ref. 1 by obtaining a double
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series of convergent upper bounds for the modulus of each
(A ) term under the conditions

I773<M< 0, |x*/4|<X< oo, (2.2)
the only conditions where M and X are arbitrarily large but
bounded.

Consequently, we can rewrite the expansion of @, as a
sum over n = 2u + A and A without modifying its conver-
gence properties. It then reads

0 x —2—1+4n "
=2 (’2") Ly 14 n(x)0 8 (m), (2.3)
n=0
with
biln) = ;( — P\ AR (2.4)

The latter sum extends to all integral values of A satisfying
the conditions
(n—A)/23450, (2.5)
and having the same parity as n, so that ( — 4 )/2 is an in-
teger (by definition’ BY), =0 whenu <0ori <0Oord>p).
Accordingly, we can also write

b= 3 (=17 B 2ms
where® n' = [(n + 2)/3] and n" =
cular,

b =1, b =0, 2.7)

since B3} = 1, while the inequality (2.5) cannot be satisfied
for n = 1. Introducing the expansion (2.3) into Eq. {1.7), one
obtains the recurrence relation

(2.6)

[n/2]). We have, in parti-

bin) = — 222 b0 O i) (28)
4n°n
for n>1and b ")) = 0 when m <0.
Abramowitz’s® proof of the absolute and uniform con-

vergence of the expansion (2.3), given explicitly for /=0
only, is marred by the fact that he has erroneously deduced
from the relation (2.8) that |5 |~ |277| ~". From Egq. (2.6),
one rather has

bVm)=0(m~—?), withn' = [(n+2)/3]. (2.9)
From Egs. (1.8a) and (2.3), the expansion of F; as a sin-
gle series of modified Bessel functions reads

F, = (1729)Co(m)u, ("7)”2

ad n41
X nzfo(%) Ly 1 ()0 D). (2.10a)

It directly applies to a repulsive field, i.e., when x is real and
positive. For an attractive field, with the notation’

§=e"x (£>0), f=e"n=|al/k, (2.11)
we have C(77) = Cy(#)exp(wi}), and hence
Fy = (— )+ (1729)Co()e™u, (@)1
@ — n+1
x 3 (S4) w2100
n=0

i.e., a series of Bessel functions of the first kind.

lil. EXPANSION OF THE IRREGULAR FUNCTION

We have proved in Ref. 1 that the expansion of @,,
corresponding to that of @, as given by Eq. (2.1), is
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@,—u,(m{h(nm Z(—)"n 2

|2 —x A-1+2u+A
[ 2 L./l( ) K21+1+2,4+,1(x)

A=
“ Sb B(l) ( )—21—l+2(;4——s)+,{
+ 2 Z 2

X121+1+2(;4-s)+,{(x)]]’ (3.1)

where A (7) is defined in terms of psi functions [¥{z) = I"'(2)/
I'(2)] by

h(n) =3[¥(1 —in) + Y1 + in)] —In, (3.2)

while the b, are defined in terms of the Bernoulli numbers®
B, by

by=0, b, =B, |/(25) (s>1). (3.3)
The function 4 (1) has no convergent expansion in powers of
772, but only an asymptotic expansion for |7|—oo.

The series in Eq. (3.1) is absolutely and uniformly con-
vergent under the conditions'®

|77—2|<M< Q,
0 < £<|x*/4|<X < 0.

Rearranging it by introducing » = 2u + A as we have done
for @,, we readily obtain the desired expansions, namely

Gy = Cafn) ) ) 3, (2) s 16601

|arg x|<m — e <,
(3.4)

_ ;[2(—31) R S

[n/2]b 2 X n+1—2s
+ 2p77(3)
SE——:O 77 2

XLy a6 alm] | .

{3.5a)
for a repulsive field (@ > 0), and
G, =(— ) Co(f))~"e™ "uy (/)"
. © _é— n+1 s
<y 3 (SE) " a0
n=20
o — ; n+1 U
+ S {A=E) " a0
n=0
[n/2] —§ n+1—2s
- Z bsn_zs( )
s=0 2
X2l BY 0] (350

for an attractive field (@ < 0).

IV. ASYMPTOTIC EXPANSION OF THE IRREGULAR
FUNCTION FOR LARGE 7

For real and positive 7, Breit and Hull'! have proved
that one obtains an asymptotic expansion of G, for 7— oo
when an asymptotic expansion is substituted for 4 (7). This
remains valid for complex 7, provided one takes into ac-
count the domain of validity of the expansion used for 4 (7).
From elementary properties of the ¢ function,'? 4 () is easily
given the forms

h(n)=h* () Fime’™ — 1), (4.1)
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with?
h* () = (£ in) £ (1/2in) — Infe* ") 4.2)
~3 by, (4.3a)

s=1
The latter asymptotic expansion holds when |7|—w for
both A * and A —, but, respectively, under the conditions

latrg 7 + #/2|<m —e< . {4.3b)
Since & () = [h T{n) + & ~(n)]/2, we also have
him)~ 3 by~%, (4.4a)
s=1
for |77|— 0, but only when
larg |<m/2 — e <m/2. {4.4b)

Rearranging the product 4 ()P, such as it is given by
Egs. (4.1), (4.3}, and (2.3), we obtain, under condition (4.3b),

(/2 2k (), ~ Fime®™ — 1) Hx/ 2P+ 2 &,

o [n/2) x n4l-2s
+ 3 S on(3)

n=0s5s=0
XIZI+n+!—2s(x)bg)—~2s(77)' (4.5)

Substituting this result for the first term in Eqs. (3.5), we then
have, for a repulsive field (& > 0),

G~ — Co("?)_]“l(ﬂ)'/z[ + ime™ — 1)~

53] C:2 i A1
= 2 Gn+1 n

w f L y\nt!
+23 (Z2) Ka s 010,
"= (4.6a)
for |7|— 0 and under the conditions
argke[ ~nr+n/24+¢€ +nm+w/2—€]
Similarly, for an attractive field (« <0), we have

Gy ~( — Gl ey 31" Fr ™ — 1)~

(4.6b)

x 3 (S5) e B 19)

n=10
+78 (S o wtn)], e

under the same conditions {4.6b}.

The results just obtained take a simpler form in the right
half of the complex k plane, since (¢*™ — 1)~0 for |7|—c0
in the domain (4.4b). Accordingly, we have

G~ - 2Co(77)_lu1(77)1/2 i (:—x)’“H

n=0 2
XK 4 n v 1X)057), (4.7a)
for a repulsive field and
o . n+1
Gy ~( — ) TCo) e~ ™ ()2 2(7‘5)
XYy 4 w1 €)DVR), (4.7b)

for an attractive one, when k is real and positive, and more
generally when
larg k |[<7/2 —e<m/2. (4.7¢)
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Equations (4.7) also result directly from introducing the ex-
pansion (4.4} into Eqs. {3.5). The expansions (4.7) and the
second series in the expansions (4.6) are divergent for
|7|* < w0, as are the asymptotic expansions (4.3) and (4.4).

However, the expansions (4.6) and (4.7) are not asymp-
totic expansions proper, since any term is not always of an
order of magnitude larger than the one next after it. From
Eg. (2.6), it is indeed obvious that b4}, _,, 5%}, _,,and ¥},
areall O (7 ~2V), so that the three corresponding terms in the
divergent series of Egs. {4.6) and (4.7) should actually form a
single term in an asymptotic approximation of G,. Accord-
ingly, instead of Eq. {4.7) e.g., we must rather write

X

Gy~ 20 *Cfr) (2 s 109

- i [i(;{)l+31v+k21+1+3~+f(x)

N=0Lli=1 2

X%} )]} (4.8a)

and
Gy ~( = )mu () 2Colfp)~le =™

-G 5|

N=0
XYt sy 1080 )]

for |n| = |f|-> and |arg k |<7/2 — e<7/2.

In the case of an attractive field and for real positive
energies only (7 > 0}, the expansions (4.7a) and {4.8a) must be
equivalent to the one of Breit and Hull'! and Ham,'* name-
ly,” in the notation of Secs. I and I,

G~ — 2uy () *Cofm) ™t 3 (— )y

p=0
" —x 2ut+A+1
x5 BU(SE) T K eaalth 49)
)

for 7— 0. Indeed, the very fact that the function
G,/ Luy ()" *Colm) '] (4.10)

has one asymptotic power expansion in Poincaré’s sense en-
tails the uniqueness of that expansion.'®-*® The expansions
{4.7a) and (4.9} only differ by a rearrangement of terms, the
same that modified Eq. (2.1) into Eq. (2.3} and which we also
used in Sec. I1I in absolutely and uniformly convergent dou-
ble series.

In this context, it is of practical importance that we now
turn to the asymptotic expansion of G, as given by
Abramowitz,*% also for 7 > 0 and 77— oo . With the notation
introduced in Sec. I, it reads

G, ~A, ()21 ), ()~ V2 Cofm) ™
x 3 (Z2) " Karna b
2 24n+1 n 77 i

n=0

25

(4.8b)

(4.11)

where the overall factor 4,(7) remains to be fixed. Compar-
ing Egs. (4.7a) and (4.11), the uniqueness of the expansion of
the ratio (4.10) leaves no other choice than defining 4,(7) as
being the polynomial

— 2u;(m)/ 1),
or a function asymptotically equal to it.

(4.12)
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Abramowitz® proceeds differently. He fixes A, (7) by im-
posing the divergent expansion (4.11) to satisfy a condition’®
verified by the exact (unexpanded) G;, namely

{1 ~"u}*Colmx/2' G} o = 1. (4.13)

This necessarily introduces in Eq. (4.11) the inverse of a di-
vergent expansion and he actually obtains 4,(n) as

M) = —2 i(—)"(21+n)!bwm)]’ .

But, if we introduce the asymptotic expansion (4.7a) into Eq.
(4.13), we then obtain®®

z (= odm2l +n)t
uln 2, 2

so that the two factors (4.12) and (4.14) differ only by a factor
asymptotically equal to 1, i.e., equal to 1 + O ( ~2¥)for any
N>

The former factor (4.12) is obviously much easier to use
and normally more accurate in practice, since there is no
need to expand or to approximate it. It partly reduces with
the factor u,” /% inEq. (4.11).

On the other hand, it is worth noticing that, for /> 0,
when only a few terms are retained in the denominator of
Abramowitz’s factor A, (1), one introduces poles in the corre-
sponding approximate G;. Although, in principle, such ap-
proximations are valid only for 7> 1, this can, in practice,
reduce the range of ’s values in which the corresponding G,
remains a good approximation of the exact one.?! For / = 0,
A1(n) simply reducesto Ao = — 2[1 + Oy~ ?")] with N ar-
bitrarily large.

To conclude, we observe that the practical advantage of
the expansions (4.6)—4.8) over those directly deduced from
Ham’s expansion™'* of G,, such as the expansion (4.9), is that
they come out as single series {rather that as a double sum
over u and A ). Moreover, the polynomials b /() can easily
be obtained algebraically, by means of the single-index re-
currence relation (2.8), up to any desired value of #. They are
givenin the Appendixupton = 9[i.e., N =2inEq. (4.8)]. In
contrast, obtaining algebraically the 8!/} for any /and y and
for 0 <A <u — 1 proved to be very tedious.?

(4.14)

1, (4.15)
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APPENDIX: THE FIRST POLYNOMIALS b5%(7)

The polynomials b )(%) given hereafter for n<9, i.e.,
N<2in Eqgs. (4.8), illustrate the increase with 7 of their low-
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est (n') and highest (n") powers in 7~ 2. In agreement with
Eqgs. (2.4)2.9), we have

I+1
b0 =1, V=0 V= — )
) 1 2 47’2
1
b= ,
? 129
() (1+ 1)(1+2) ) 51+8
b4 - , bS - )
3279* 2407*
pi= 1 U+ 1I+20+3)
¢ 7 288y* 3847° ’
b = _ 3512+ 1471 + 142
! 1344075
p— S+ 4+ N2+ +4)
’ 5760m° 61447° ’
) 1 3513 4 27317 + 6641 + 496
by'= — -+ 5 .
103687 1612807
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It is established that the solution u of u#, = 4 (™) > 0, with positive initial data, positive lateral
boundary data, and positive exponent m, converges exponentially to the solution v of the
corresponding stationary equation 4 (v™) = 0. The analysis also provides the form of the leading

contribution to the difference (1 — v).

1. INTRODUCTION

Let B be a bounded domain in R ",n < 6, and consider
the solution & = u(x,t) to the first boundary value problem
for the nonlinear (concentration-dependent) diffusion equa-
tion

u,=4u" inB X(0,»), (1)
for m > 0 with positive initial data

u{x,0) = F(x) in B, (2)
and with fixed positive lateral boundary data

u(x,t)=G(x)>0 ondB X{0,x). (3)

The symbol 4 denotes the Laplacian in the variables x and
dB denotes the boundary of the domain B. The objective of
this paper is to establish the rate and the form of convergence
of solutions u(x,t) of (1)—{(3) to solutions v = v(x) of the sta-
tionary equation

4™ =0, 4)
with
v=_G ondB. ' {5)

For m = 1, problem (1)—(3) represents the first bound-
ary value problem for the linear heat equation. In this case, it
is well known that under appropriate smoothness assump-
tions on the data and the domain, there exists a positive func-
tion H in B vanishing on the boundary, a positive constant k,
and a constant ¢ (which may be zero) such that

exp kt [u(x,t) — v(x)}—cH (x) (6)

in H}(B)ast—>w.Here (4 + k)H=0in B, H=0ondB,
and H is the eigenfunction corresponding to the principal
eigenvalue k. Equation (6) thus establishes the exponential
convergence of the solution u to v, where the limiting form is
determined by cH (x)exp ( - kt ). Inthis paper we establish an
exponential convergence result [corresponding to (6)] in the
nonlinear diffusion case with m > 0. For the linear problem
{1) with m = 1, higher-order expansions can also be estab-
lished. The question of higher-order expansions for the non-
linear problem is not considered here.

For the linear case, the convergence result (6) holds
even if G=0 on dB. It is well known for the nonlinear
case,’? however, that if the positive lateral data is replaced
by zero lateral boundary data, then one does not obtain an
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exponential rate of convergence to a limiting solution.
We now briefly discuss the physical origin of Egs. (1)-
(3). Notice that Eq. (1) can be written in the form

u, = VoD (1)Vu), o

where D (u) = mu™ "' is called the diffusion coefficient. If
m > 1, then D ()0 as u—0 and this case is called the slow
diffusion problem. If 0 < m < 1, then D (u}— « 0 as u—0 and
this case is called the fast diffusion problem. The slow diffu-
sion problem arises in many contexts. Problem (1}+3) is used
to model the motion of a polytropic gas in a porous medium;
then u represents the density of the gas. This problem occurs
in the diffusion of biological populations whose rate of diffu-
sion is population-dependent. This problem is also used to
model radiation heat conduction for ionized gases; then u is
interpreted as a temperature. It should be emphasized, as
mentioned in Ref. 3, that the slow diffusion process may not
be slow compared to other physical processes in the environ-
ment. For example, at temperatures greater than 10 000 K,
where radiation heat conduction is important, the nonlinear
heat conduction mechanism can transfer energy at a speed
much faster than the speed of sound in the medium. Slow
diffusion thus may be very fast, but the speed of propagation
is still finite and therefore much slower than for /inear diffu-
sion in similar circumstances. The fast diffusion problem
arises in plasma physics theory; then u represents plasma
density. Okuda and Dawson* discussed a mechanism for ex-
plaining the experimental observation that crossfield diffu-
sion of a plasma is faster than predicted by classical collision
theory when the plasma is held in a strong magnetic field.
Their modeling led to a one-dimensional problem with
m = 1/2. See Refs. 2,4, and S for discussions.

Equation (1) and various modifications of it have also
been the subject of much interest under boundary conditions
other than (2) and (3). In Sec. V, some of this recent work is
summarized.

il. PRELIMINARIES AND STATEMENT OF RESULTS

We now motivate the convergence result, which is stat-
ed below in Theorem 1. Throughout, we assume that Bis a
bounded domain with smooth boundary of class C3. Write
w = u — v and assume that formally w = z + higher-order
terms. Then formal linearization shows that z satisfies the
equation
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A(mv™~2) =z, (8)
with zero lateral boundary conditions and appropriate initial
conditions. The linear equation (8) has a slowest decaying
“mode” corresponding to the separable solution
cS(x)exp ( — kt), where §>0in B, and S=0on dB is an
L *(B)normalized eigenfunction corresponding to the princi-
pal eigenvalue for the non-self-adjoint eigenvalue problem

A(mv"~'S¥ = —K*S*, S*=0 ondB. (9)
In Theorem 1 we establish the result that the formal lineari-
zation process described above determines the precise rate
and form of decay of u(x,t ) to the equilibrium solution v(x).

Theorem 1: There exists a constant ¢, which depends
upon the initial data and may be zero, such that

exp kt [u(-,t) — v(-)]—>cS () (10)
in H} (B) as t— . Here S,k are determined by (9).

Theorem 1 is established by first deriving an analogous
result for the difference ¥™ — v™. Define # =u™, v =0v",
F=F™ G = G™. Using these definitions, we see that  sat-
isfies the equation

Au=(g+ 1)u?u, onB X{0,«), (11)
with ¢ = (1 — m)/m and v satisfies A () = 0. Letw =% — U
denote the difference. Then i satisfies the equation

Aw = (g + 1)U + w)w,, (12)
with iv = 0 on the lateral boundary. Again using formal lin-

earization and assuming that v = Z + higher-order terms,
one obtains that Z satisfies

A4Z)=(g+ 1)v%z, in B X(0,). (13)
This equation has a slowest-decaying mode corresponding
to the separable solution ¢S (x)exp ( — kt ), where §> 0 in B,

S=0ondBisanL? normalized eigenfunction correspond-
ing to the principal eigenvalue &k for the eigenvalue problem

AS)= —k(g+1)7"S inB, (14)
with § =0 on dB. In Theorem 2 we establish that formal
linearization yields the correct answer for the rate of conver-
genceof L to U,

Theorem 2: There exists a positive constant ¢, which
depends upon #(x,0) and may be zero, such that

[#(-,t) — 5(-)]exp kr—cS (/) (15)
in H| as t— . Here S, k are as described above. _
Remark: It should be noticed immediately that k = &

and that § and v™ 'S differ only by a multiplicative con-
stant.

lil. PROOFS

We need the following lemma for the proof of Theorem
2. Throughout the remainder of the paper integration with
respect to x will be over the set B.

Lemma:DefineM (¢} = §{|Viv(t,x)|*}dx. Thenthereex-
ists a positive constant X such that for all £> 0,

M (t)<K exp( — 2kt). (16)
Proof: Define f(x,) = (g + 1)[9(x) + @w]? Using Eq.
(12) for iv, one obtains that
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M) = —2 [ ABlxVdx (17)
S, iofe,x))

From (17), we conclude that M (t) is decreasing. Next

o 5) o),

which can be rewritten, using theidentity (17) for M (¢), in the
form

—M(t) (w’fdx
M) " 2M(t)

Next we need to estimate the right-hand side of (18). There
exists a(x,z) in the interval [min(O,w(x,t)), max(0,w(x,
t))) such that

Sxlx,t ) = fx,0) + £ (x,a(x.t ))iv,
where the subscript iv indicates partial differentiation with
respect to the second (iv) argument.

Using appropriate maximum principles, it is easy to see,
using (12), that both min{ — w(x,? )} and max wix,¢) are de-
creasing functions of z. Hence (18) can be rewritten as

() ] ) o

for someconstant k ' independent of ¢. Since iv(x,¢ ) = Oon the
boundary of B and by using the Rayleigh—Ritz characteriza-
tion of the minimum eigenvalue, one finds that the first term
on the right side of the inequality of (19) is bounded above by
1/2k. Sobolev estimates show that the second term is bound-
ed above by k "[M (¢)]"/? for some constant k ” since x is a
member of R” with n < 6. Hence

(—M()/M@)<(172k) + k"M ()2
Since M <0, then

(— 2k)>(M /M) + 2kk "M ~*/*M.
Integrating from O to ¢, one obtains that

(— 2ke)>In(M (¢)/M(0) + 4k k "(M /%(t) — M 1/2(0)).

(18)

Because M (¢) is bounded above for all ¢ > O, the lemma fol-
lows from the previous inequality.

Proof of Theorem 2: Define p = (iv exp kt) and recall
that f{x,iw) = (g + 1)(v(x) + iv)g. Then p{x,t) satisfies the
equation

Ap + kp flx,p exp ( — kt)) = f{x,p exp ( — kt)lp,. (20)
Recall that the lemma has established bounds on the L ? and
H ' norms of p(-,¢ ) independent of ¢.

Now for functions 4 (-} in H ;(B ) define the time-depen-

dent “energy functional”
h (x)
Eh)= f[%th - &

Xfx,zexp (— kt ))dz]dx, (21)
and gt} = E,(p(-,t)). Since
st 1>~ (Wt

— k max{ £(x,0), f{x,ip(x,? ) }p*(x,t ) }dx,
the lemma guarantees that g(-) is bounded below for ¢ > 0.
Next we have that
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§1t) = [[upuc + ko flxp exp (it I, Jdx

rd
+ ff k 2h exp( — kt )f,,(x,h exp ( — kt )\dh dx,
0

wherep = pix,t ). Integrating the first term by parts and using
Eq. (20), one has that

86)= [{ ~rixp esp (~ kit

+ r kh?exp (— kt) f,(x,h exp ( — kt ))dh }dx. (22)

Observing that £, (x,h exp ( — kt)) is uniformly bounded for
hbetween0andp(x,t ) and using Lemma 1 tobound the L *(B)
norm of p, one can show that there exists a constant X such
that the second term on the right side of (21) is bounded
above by K exp ( — k). This estimate shows that the second
term is absolutely integrable on (0, oo ). Since g{¢ ) is bounded
below and the first term on the right side of {21) is nonposi-
tive, there exists an increasing sequence of times ¢, -— oo such

that g(t, -0 and

ff (x,pexp(—kt)p?dx—0 asn—o. (23)

Moreover, g(t) has a limit as t— .

Using (20), one obtains that §|4p(x,t, )| dx is uniformly
bounded for the sequence. Hence there exists a subsequence
of times, again denoted by ¢, , and a function R (-) in H 3(B)
such that p(-,¢, )R () as #,— . We must show that R is a
solution to (14). To accomplish this, multiply (20) by any
function J in H }(B), integrate one term by parts, and take
the limit as #— o0 . One obtains, using the integral bounds on
p and (22), that

j( ~ VJVR + kJ (g + 1R )dx = 0. (24)
But this implies that R () is a weak solution to the linear
equation (14) with zero boundary conditions. Since (14} is
linear, then R is, in fact, a classical solution and therefore
R = ¢S for some constant c. Note also that E, [R (-)] has limit
Oast—w.

Weneed to establish that p(-,# }>R () for all zand not just
for the above subsequence. Since p(,t,}—R (-), one can use
estimates on p(-,¢, ) to conclude from (21) that g(z,, ) has limit O
as n— oo . Consequently, gz ) has limit 0 as t—co.

Suppose for the purpose of contradiction that p{-,f ) does
not converge to R (-) as 7— « . Then there exists a sequence of
times ¢, such that p(-,¢, ) does not converge to R (-). Since g(¢ )
is bounded, the sequence p(-,t,, ) is weakly bounded in H (B ).
Hence there exists a subsequence again denoted by ¢,, and a
function Z() not equal to R(), in H(B) such that
Plt, ) —>Z ) strongly in L *(B), and weakly in H §(B).

We next show that Z (- is also a solution to (14). Since
§|Vp|? dx is lower semicontinuous with respect to weak con-
vergence, one obtains that

limglt,) = % f[ |VZ |2 + k (g + 1)5(x)7Z 2] dx<0.

However, by the Rayleigh-Ritz minimizing property of
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k, equality must hold in the above equation. Thus Z (-) also
minimizes the Rayleigh—Ritz quotient and is also a solution
to (14). Hence Z = ¢"S for some constant c”.

Thus Z, R are distinct solutions of (14). We need to
show that this is not possible. We accomplish this by obtain-
ing an estimate on the time derivative of §|Vp|* dx.

Differentiating, integrating by parts, and using (20), one
obtains

1
7;,‘1J|vp|2 dx= — f(Ap)Zfdx + fk \Vp|? dx. (25)
Next we develop an estimate for the first term on the

right side of (25}. Integrating by parts and using the Cauchy-
Schwarz inequality, one obtains

(f |Vp|? dx)2< E‘%dﬁ)(f pzfdx).

Since §|Vp|? dx>k §p*f(x,0)dx, then

ks [vpl e pY e
SPfxpexp(—kildx ) flx

We then write (p°f(x,pexp(—kt))dx=A4(t)+
B(t)exp (— kt), where A (t)= § p*f(x,0)dx and B(t) is a
bounded term on (0, o0 ). Recall that the lemma bounds the L 3
norm of p. Substituting this expression into (26) and then
using (26) in (25) one obtains

|4p|*dx
D exp ( — kt))

(26)

S |Vp|* dx(B t)exp (— kt))
A(t)+ B(t)exp ( — kt)

1 d 2

T f |Vp|? dx<k . (27)
Recall that §|Vp|* dx is also bounded for #>0 by the lemma.
We shall use the estimate (27) below.

It is easy to show that the set of limit points of p[-,¢),
denoted by Q, is a connected set in H j(B) of equilibrium
solutions of (14). Let @ = min(f|VA |* dx:h in Q), and let b
denote the corresponding maximum. Define 4d = b — a.

Since the set Q is connected, there exists a sequence of
times ¢, —co such that

limJ\|Vp(x,t,,)|2 dx=a+2d, limA(,)=a+ 2d.

For each ¢, let s = s(t,,) be the first time after ¢, such that
either

(I)J‘IVp(x,s)(2 dx=a+d,

(2)f|Vp(x,s)|2 dx =a + 3d,

or
(3)4(s) =a +d.

The differential inequality (27) shows that, for sufficiently
large 1, ,5(t, ) occurs because either case (1) or case (3) occurs.
Hence there cannot exist a sequence {z,} such that
plt,)—»c*S in  H}(B) for constant c¢* with
§|Ve*S(x)|*dx>a+3d. This is a contradiction and
Theorem 2 is proved.

Theorem 1 follows in a straightforward manner from
Theorem 2. The details are omitted.
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TABLE L Zeroes (r,) of J 1,5, and eigenvalues k, = 9/8 r} for the first five
eigenfunctions of Eq. {32). The values of n°#” are listed for comparison.

n r,  k, nn’

1 2.902 59 9478 13 9.869 60

2 603275 40.943 29 39.478 42

3 9.170 51 94.610 47 88.826 44

4 12.310 19 170.483 48 157913 67

5 15.450 65 268.562 87 246.740 11
IV. EXAMPLE

As a concrete example of the results presented in Sec.
11, consider the one-dimensional problem

u,, =2uu, on{0,1)X{0,x}, {28)
with

ul0,t)=0, u(l,t)=1, {29)
and

u(x,0)=F(x)>0 on(0,1)}. (30)

Since u(0,) = 0, Theorem 2 does not directly apply to
this equation. However, since #(1,t) = 1 > 0, the solution to
{28)30) does not vanish in finite time and it can be shown
that the conclusion of Theorem 2 is also valid for this prob-
lem. Then

vx) = x, (31)
and S (x) satisfies
S, +2kxS=0, (32)

with S{0)=S§(1)=0.
Equation {32) can be transformed into Bessel’s equa-
tion. Let

r=(2kx)"*/3k, . (33)
and

S (r) = (3kr)'°R (7). (34)
Then substituting into (32), we find that R satisfies

PR, + R, + (P —§)R=0. (35)
Therefore,

R () =Jy5fr), (36)

where J, (r) is the Bessel function of the first kind of order a.
The various eigenvalues and eigenfunctions of (32) are
found from (36) by locating the values r, such that

Jislra) =0, 37)
i.e., the zeroes of J, ;. Writing r = r, x*'? and using {33), we
see that

k,=3r2. (38)

The zeroes 7, can be found very accurately using a nu-
merical scheme due to Temme.® The results for the first five
zeroes and eigenvalues are listed in Table 1, where the values
of n*7? are also listed for comparison.
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Assuming that the conclusion of Theorem 2 is valid for
this problem, we find that the solution of (28) satisfies

{ulx,t) — x|exp kt < const x'/2 J, 5(r,x*"?). 39)

V. BRIEF REVIEW OF RELATED RESULTS

The asymptotic behavior of solutions to (1) in the non-
linear case has also been treated for the case when the posi-
tive lateral boundary data (3) is replaced with zero lateral
boundary data. The slow diffusion case has been treated by
Aronson and Peletier’ and the fast diffusion case by Berry-
man and Holland.> Convergence of solutions of (1}~(3) to
appropriate separable solutions S (x)T'(¢) is established in
these papers.

Problem (1)~(3) has also been treated in the slow case in
Ref. 4, where u, is replaced with p{x)u,, with p>0in B and
vanishing on dB. Under certain assumptions, convergence to
a separable solution of {1)~{3) is obtained. In this case the
equation mathematically models the thermal evolution of a
heated plasma in which the density is stationary but inhomo-
geneous.

The one-dimensional Cauchy problem for (1) and (2)
has also been treated in the slow diffusion case. Convergence
of solutions of (1) and (2) to appropriately scaled self-similar
solutions has been established under various conditions. See
Refs. 3, 7, and 8.

The problem (1) has also been treated on the half-line
{x > 0) when the concentration #(0,¢ ) is held at some constant
value U for all > 0. It has been established that the solution
u converges to a similarity solution of (1). The fast diffusion
case has been treated recently by Bertsch®, while the slow
diffusion case was treated much earlier by Peletier.’

Finally, the slow diffusion case for {1) and (2} with zero
lateral boundary data has been treated in case Eq. (1) also
contains an appropriate source of extinction terms f(u).
These problems have been studied in the one-dimensional
case by Aronson, Crandall, and Peletier,'® Rosenau,'! and
by Gurtin and MacCamy.*?
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In this article a simple derivation of the addition theorems of the irregular solid harmonics, the
Helmholtz harmonics, and the modified Helmholtz harmonics is presented. Our derivation is

based upon properties of the differential operator #7*(V), which is obtained from the regular solid
harmonic Z7'(r) by replacing the Cartesian components of r by the Cartesian components of V.
With the help of this differential operator #7'(V), which is an irreducible spherical tensor of rank /,
the addition theorems of the anisotropic functions are obtained by differentiating the addition

theorems of the isotropic functions. The performance of the necessary differentiations is greatly
facilitated by a systematic exploitation of the tensorial nature of the differential operator Z7(V).

I. INTRODUCTION

In molecular and solid state physics, systems with more
than one electron and with more than one atomic nucleus are
treated. Consequently, it frequently happens that the eigen-
functions or operators which occur there have arguments
that are given as sums or differences of two vectors that rep-
resent the coordinates of electrons and nuclei. Since quan-
tum mechanical computational procedures usually involve
integrations, the dependence of eigenfunctions and opera-
tors on the sum or difference of two vectors may be very
inconvenient and it is often imperative to obtain a separation
of variables, which can be achieved with the help of addition
theorems. The probably best-known example of such an ad-
dition theorem is the Laplace expansion of the Coulomb po-
tential in spherical coordinates,

() 3).
r R

1 i L 4r 7.
ll‘—-Rl = o,,,__121+lr’+'

r. =min{r,R), r, =max(rnR) (1.1)
There is an extensive literature on addition theorems. Par-
ticularly well-studied are the addition theorems of those so-
lutions of the homogeneous Laplace, Helmholtz, and modi-
fied Helmholtz equations that are also eigenstates of the
orbital angular momentum operators. The addition theo-
rems of the regular and irregular solid harmonics which are
solutions of the homogeneous Laplace equation were studied
by Hobson,' Rose,? Chiu,> Sack,*> Dahl and Barnett,® Stein-
born,” Steinborn and Ruedenberg® and by Tough and
Stone.® The addition theorems of the Helmholtz harmonics
which are products of Bessel functions and spherical har-
monics were studied by Friedman and Russek,'® Stein,!!
Cruzan,'? Sack,” Danos and Maximon,!*> Nozawa,'* and by
Steinborn and Filter.'> The addition theorems of the modi-
fied Helmholtz harmonics which are products of modified
Bessel functions and spherical harmonics were studied by
Buttle and Goldfarb'® and by Steinborn and Filter.!*

In the articles cited a multitude of different methods
was used for the derivation of these addition theorems. Most
of these approaches, however, are relatively complicated and
sometimes rather lengthy and are based upon some special
properties of the functions under consideration. Therefore, it
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is the intention of this article to demonstrate that the addi-
tion theorems of the irregular solid harmonics, the Helm-
holtz harmonics, and the modified Helmholtz harmonics
can be derived in a very simple and unified way. Our method
has the additional advantage that it can also be applied in the
case of other functions.

Our derivation is based upon some special differential
operator, which we call the spherical tensor gradient % 7'(V).
It is obtained from the regular solid harmonic % *(r) by re-
placing the Cartesian components of r—ux, p, and z—by the
differentials d /dx, d/dy, and d/dz. The properties of the
spherical tensor gradient, which was in principle already
used by Hobson,’ were investigated by Santos,'” Rowe,'®
Bayman,'? Stuart,”’ and recently by Niukkanen®"** and
ourselves.”*?* We shall show that there exists an intimate
relationship between the spherical tensor gradient and irreg-
ular solid harmonics of (modified) Helmholtz harmonics, re-
spectively, which can be employed profitably for the deriva-
tion of addition theorems.

il. DEFINITIONS

For the commonly occurring special functions of math-
ematical physics we shall use the notations and conventions
of Magnus, Oberhettinger, and Soni* unless explicitly stat-
ed. Hereafter, this reference will be denoted as MOS in the
text.

For the spherical harmonics Y 7*(6,¢ ) we use the phase
convention of Condon and Shortley,?® i.e., they are defined
by the expression

my jmtim (21 + l) (1 - lml)! 2
Yrog) =it = (l+|m|)!]
Pl™\(cos §)e™. 2.1)

Here, P{™\(cos 6) is an associated Legendre polynomial
my2 dl+m (x?. . l)l

m — 2
Prx)=(1—x% PR ET=SYT

— (1 __ x2)m/2

dm
£ px). 2.2
Pl 2.2)

For the regular and irregular solid harmonics we use the
notation
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Yr(r) =rYT6.8), (2.3)

Friy=r"'"'Y6,0). (2.4)
For the integral of the product of three spherical harmonics
over the surface of the unit sphere in R® we write

(| Lymallymy) = f Y@ )Y Q)Y T2 )2,

(2.5)

These Gaunt coefficients may be expressed in terms of
Clebsch-Gordan coefficients?’ or 3jm symbols

{lsms|lma|lim,y)
172
=( - 1)m3 [(211 + 1)(2[24+ l)(2]3 + 1)]
T

. (l1 1, 13) ( L L 1 )
0 0 0/\m m —my’
With the help of the Gaunt coefficients the product of two

spherical harmonics can be linearized
YT(0.6)YT0:4)

(2.6)

lnax  (2)
= z (Imy + my|lym\[Lm) Y+ ™0,4).  (2.7)

I=1n
The symbol = indicates that the summation is to be per-
formed in steps of two. The summation limits in Eq. (2.7) are
direct conseqences of the selection rules satisfied by the
Gaunt coefficient and are given by?®

Imax = Il +’ Izy
max(|l; — bL|,jm; + my)),
if I, + max(|l, — L},|m; + m,|) is even,
Imin = and
max(|/; — b|,m, + m,|) + 1,
if I + max(|l, — L,|,[m, + m,|) is odd.
{2.8b)

{2.8a)

lil. SOME PROPERTIES OF THE SPHERICAL TENSOR
GRADIENT

In this section we shall review only those properties of
the spherical tensor gradient %/7'(V) which are needed for
our derivation of the addition theorems of the irregular solid
harmonics and the (modified) Helmholtz harmonics.
Further properties can be found elsewhere.'’-**

The spherical tensor gradient is an irreducible spherical
tensor of rank /.?° Therefore, if the spherical tensor gradient
is applied to a function ¢ (r) which only depends upon the
distance 7, i.e., to an irreducible spherical tensor of rank
zero, we obtain in agreement with the angular momentum
coupling rules an irreducible spherical tensor of rank /,
which is given by

1o = |(- Y40 orin.

As we showed recently’® this relationship can be derived
quite easily with the help of a theorem on differentiation
which was published by Hobson®! already in 1892. Equation
(3.1) can also be obtained by considering special cases in
more recent publications by Santos,*> Bayman,*® Stuart,**
and Niukkanen®® who, however, apparently were not aware

(3.1)
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of Hobson’s theorem.*! If the spherical tensor gradient is
applied to another spherical tensor of nonvanishing rank,
i.e., to a function that can be written as

nr) =/,nY6,8), (3.2)
the structure of the resulting expression can also be under-
stood in terms of angular momentum coupling,®
Y VIF (r)

4

ey
XV, (VY T+ "40,8). (3.3)

For the functions 7, in Eq. (3.3) various representations
could be derived, for instance®’

1/1,12(")
ar (_ Al)

=3 q(;aﬂ)_%’" 207+ =2

{2)
{Im; + lellmlllsz)

1 d\~-9/,(n)
—— = 34
X (r dr) r- (34)
- ak ("’AIZ)s(All +%)s 2sph—b—2s—1
5=0 S!
I, —s
x (-2 3.35)
r dr
Al={l, +1,=1)/2, Al ={—1,+1L)/2,
(3.6)

AL=(I+L-0)2, al)=+L+1)/2

It is a direct consequence of the selection rules satisfied by
the Gaunt coefficient in Eq. (3.3) that 4/, Al,, Al,, and o{l ) are
always either positive integers or zero.

Since the spherical tensor gradient is obtained from the
regular solid harmonic by replacing the Cartesian compo-
nents of r by the Cartesian components of V we may con-
clude that the spherical tensor gradient and the regular solid
harmonics must obey the same coupling law. Hence we ob-
tain from Eq. (2.7) (see Refs. 38 and 39)

gy )
VeIV = Y (Imy+my|lim,|Lmy)

X Vh+b—lgm+myg), (3.7)

Let us now assume that a spherical tensor F (r) and a radi-
ally symmetric function ¢ () are known, which satisfy
Far) = ZTHV)g (7). (3.8)

If the spherical tensor gradient &7"{(V) is applied to
F (r) we then can couple the two spherical tensor gradients
according to Eq. (3.7) and finally obtain with the help of Eq.
(3.1)

G T(VIFTr)
=TIV ()

lyms (2)
= Y (Imi 4+ my|lim|lm)Vhth—!
I=Imin

<[ o] oromm

This relationship is particularly well-suited for the functions

(3.9)
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which are treated in this article since in these cases the differ-
ential operators which occur in Eq. (3.9) can be applied quite
easily. Under these circumstances Eq. (3.9) is in our opinion
preferable to other, more general expressions which were,
for instance, given by Santos,'” Niukkanen,?! and our-
selves.?* Relationships of the type of Eq. (3.9) were already
used by Novosadov® and ourselves*! in connection with
- functions related to modified Bessel functions.

IV. THE ADDITION THEOREM OF THE IRREGULAR
SOLID HARMONICS

Our derivation of the addition theorem of the irregular
solid harmonics will be based upon the fact that the addition
theorem of the Coulomb potential, Eq. {1.1), is known and
that the application of the spherical tensor gradient to the
Coulomb potential yields the irregular solid harmonic

Zrr) = [(— 1)//(21 = W] V) 1/r).

This relationship, which was already known to Hobson,
can be proved quite easily with the help of Eq. (3.1). In order
to facilitate the application of the spherical tensor gradient
we rewrite the Laplace expansion of the Coulomb potential,
Eq. (1.1), in the following way, which is more convenient for
our purposes:

_____l____ - < L 1) m* m,
e. +r, | =4 X ;121+1@ r )27l )
(4.2)

Here, r _ is the vector with the smaller magnitude andr., is
the vector with the greater magnitude.

The spherical tensor gradient is invariant with respect
to translation. Consequently, Eq. (4.1) can be rewritten in the
following ways: '

(4.1)

1,31

=l gy 1
(27— 1 e, +r_ |
(4.3)

I +r, )=

(=1

= o )

re +r, |
(4.4)
Here, V_ implies a differentiation with respect to r . and
V. implies a differentiation with respect tor . If we com-
bine Eqs. (4.2) and (4.4) we find
(= i & (=1
(21— 1)" L=om=-—1 211 +1

XY VPV )T, ) (45)

The remaining differentiation can be performed quite easily.
The easiest way would be the use of Egs. (3.8) and (3.9) in
connection with Eq. (4.1). We then obtain

EANE SR

Zr. +r,)=

Ame @ 27 1)
= ( —_— l)’l' 2 _(___)_.
AT, (2, -1

XAAp, + P Ay | At )VH H =AM+ ia(r), (4.6)

If we take into account that the irregular solid harmonics are
solutions of the homogeneous Laplace equation we see that
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in Eq. (4.6) only the term with / =/, 4 I, can be different
from zero. This implies
&5 VIZ4r)

=(— 124, + 2, — jit/(24, -1

XA+ Agphy + phof A [Agpan) 252 T4 (x). 4.7)
Inserting this result into Eq. (4.5) yields the addition theorem
for the irregular solid harmonics
I, +r,)

204+21 — 1

= 45 1 A ( 1

2 2 (=1 (27, + 127 — 11

L=0m= —1

XA+ Lyn + my|Im|lm Y Y e )74, ).

(4.8)

The Gaunt coefficient in Eq. (4.8) can be expressed in closed

form. In that case one obtains the factorless form of the addi-

tion theorem which was given by Steinborn’ and by Stein-

born and Ruedenberg.®
If we now combine Egs. (4.2) and (4.3) we find

g;n(r (— 1)1477. < d (— l)lI
-1 1 Eom &2 +1

XYV I e e, ). (4.9)

The remaining differentiation again poses no problems.

With the help of Eqgs. (3.3) and (3.4) we obtain after some
algebra

@4 (VI 1)

< HT)=

24 m
= ———_—(2/1( 22—; _)‘_ m Ay — Ay oy + po| Ay |Aopt,)
2 1 1
X Y+ (r), (4.10)

If we insert this result into Eq. (4.9) we find another version
of the addition theorem of the irregular solid harmonics

Zir. +r,)
{
\ 25 — 1
1,2_::,.,,_ Ly (21— OM2L — 21+ 1)
X lym,|Im|l; — Im, — m)
X(= )P ) Z ). (4.11)

In order to prove the equivalence of Eqgs. (4.8) and (4.11) we
introduce new summation variables in Eq. (4.11)

12-_—’11—1, m2=m1—"m-
With these definitions we find for Eq. (4.11)
g;”(“( + r> )

=47

(4.12)

= & 20+ 20, — 1)
=4 TV 2
1120 my _—Z~ L (=1 (27 — 127, + 11
XA+ Lm + mz(lmllzmz)@z,;(r V2T ).

(4.13)

Obviously, Egs. {4.8) and (4.13) are identical.

V. THE ADDITION THEOREMS OF THE HELMHOLTZ
HARMONICS

In this section C, (z) stands for any of the Bessel func-
tions J, (z) and Y, (z) or Hankel functions H {!)(z) and H ?(z),
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which are defined by (MOS, pp. 65-66)
& (= e/

L= Y =
meoml'iv+m+ 1)
z/2)" z
((v+) 1) °F‘( T)’ G-1)
Y, (z) = [1/sin(mv)] [ cos(mvV, (2) — J _ . (2)], (5.2)
Hz)=J,(2) + 1Y, (2), (5.3)
HYz) =J,(2) —iY,(2). (5.4)

This generalization is possible because for our derivation of
the addition theorems we shall only need the following dif-
ferential formulas and the recurrence relationship of these
functions (MOS, p.67)

(L&Y zcm=zc, b (5.5)
(%%)mz"’cv(z)z(— yz-r="C,, @ (5.6
C,_.1@)+C, (2= (2v/2)C, (2). (5.7)

With the help of these formulas the following relationships
can be proved quite easily:

[1+a?V2J(@r)~'~*Cp 1 pplar)¥ Tar) =0, (5.8)
[1+a7?V2](ar) '~ 2C_,_p(@n/¥ ar) = (5.9)
The functions in Egs. (5.8) and (5.9) are usually called Helm-
holtz harmonics. It seems that we have obtained two differ-
ent classes of solutions of the homogeneous three-dimen-
sional Helmholtz equation. However, in the case of

half-integral orders v =n + 1, n € Z, there exist symmetry
relationships among Bessel functions, for instance (MOS, p.

72)

Y _woin@=(—1", 120, neN (5.10)
Hence, if C,, ;. stands for one of the Bessel functions
Josr2r Yas12sHY 1)2,and HY, )y, then C_, ), can

J

(@lr. 41, )7V2C_yplalr. +r, )

© !
=2aP? Y 3 lar )T TV plar 0¥ ar, )T T VC Ly plars )% ar ., ),

I=0m= —1

alre +r, l)"”Cm(aIr +r. )

= (2m)"? z z (_1 Har )~ '7 V2 plar VT ar, )7 7 V2C L plar, )2 Mar, ).

I=0m= —
Again, r_ is the vector w1th the smallerandr
we differentiate Eq. (5.16) with respecttor
(@r. +r. )7'2C_ i plalr,

=a I@;n(v> )(a,l‘< +

+l‘> l)@r(a[Q
l‘> |)_1/2C—l/2(a,r< +l'> I)

also be expressed in terms of one of these functions. Conse-
quently, it would in principle be sufficient to derive the addi-
tion theorems for either the functions in Eq. (5.8) or those in
Eq. (5.9). However, since the derivation is in either case quite
simple we shall derive the addition theorems for the func-
tions in Eqgs. (5.8) and (5.9) independently.

In Egs. (5.5) and (5.6) the differential operatorz~' d /dz
acts as a kind of a shift operator for the order v. Hence, if we
combine Eq. (3.1) with either Eq. (5.5) or (5.6) we immediate-
ly find

(@r)’C, (@)% Tar) = a = '¥ 7 (V)an**'C, . (ar), (5.11)
(ar)~"C (an¥(ar) = (— a) " '] (Var) ~"C, _ (ar).
(5.12)

Bessel and Hankel functions with orders v = 1 } are essen-
tially trigonometric functions, for instance (MOS, p. 73)

Jy22) = [2/72]"? sin z. (5.13)
Therefore, we see that the Helmholtz harmonics with higher
angular momentum quantum numbers may be generated by

applying the spherical tensor gradient to some trigonometric
functions,

(@)™ I=12C 1—12lan? ar)

=a~'Y7(V)ar)"'?C_y Har), (5.14)
(@r)~'7V*Cy ppl@n)¥ Tar)
=(—a)~'F7(V)ar)"2C, slar). (5.15)

These relationships suggest that the addition theorems of the
Helmholtz harmonics can be derived in exactly the same
way as we derived the addition theorem of the irregular solid
harmonics in Sec. IV. We only have to apply the spherical
tensor gradient to the addition theorems of the relatively
simple functions (ar)”'"*C_ ,,,(ar), which are usually
called Gegenbauer addition theorems (MOS, p. 107), and
which can be compactly written as

(5.16)

(5.17)

is the vector with the greater magnitude. Following our procedure in Sec. IV
and obtain with the help of Eq. (5.14)

+r. 1)

0 A
=2 Y Y (e )T sler ) Ja T YRV, ar, )T 2C _plar, ) er, ). (5.18)

I,=0m = —1I

The remaining differentiation can be done quite easily. With the help of Egs. (3.8), (3.9), (5.8), and (5.14) we obtain immediately

a~ 4 (Var) =" 2C_,, 1 plan)/F i ar)
A

max (2}
= ¥ (-

A= Amin

)Al</1,u1 + Lo Ay [Adar) ™ i-12c _a—1nl@n@h tar), A=

Ar+ A, — )2, (5.19)

If we insert this relationship into Eq. (5.18) we obtain the addition theorem
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(a|r< +l'> ’)-I-I/ZC—I-llz(a'r< +l‘> l)@;n(a[r< +l'> ])

=(2n)" 12) 1 @r )=V alar ) ) lg ) (— 1)
(=0 m =~ 1, Zqmin
X{Lm +my|im|lmMar, )"~ 2C_, _ plar, ¥ T ™Mar,), AL =(+1,-1L)2. (5.20)
This addition theorem can also be derived by differentiating Eq. (5.16) with respect tor _ . We only need
(—a)~ &4 (Var) =~ V2C, 1 plar)¥ i lar)
= AE Y= 1P G+ palAir|Angodar) = F T2, L plan T ar), A=A, + A, — A2, (5.21)

A= Ain

which can be proved with the help of Eqs. (3.8), (3.9), (5.9),.and (5.15) to obtain a somewhat different representation of the
addition theorem,

19 @)

w 1
=P Y 3 far,)7hTVC_, _iplar ) ar,) Y

1w 0 omy == - Ixznin

(— 1)

L=
X{hm|Im|lymy, —mM}ar )22, alar )FT "™ ar,), Al =(—1+1L)2. (5.22)
To prove the equivalence of Egs. (5.20) and (5.22) we only have to introduce in Eq. (5.22) the new summation variable
Uy = m; — m and to change the order of the two / summations.

The addition theorem of the function (@r) =~ 12C, . |, (@r)¥ar) can be derived in exactly the same way. If we
differentiate Eq. {5.17) with respect tor, we find

(a§r< + l.> i)‘—z“ 1/2014- 1/2(0‘“’

=(2ﬂ.)3/2 i
L=0m = ~1

19 @)
X Z (= 14 (Lm + m|im|lim)ar_ | I 1/2C12+ walar )T ™Mar, ), AL ={+1— Ly/2.

1 rznlx

< +r. @Melr. +r.])

(= ar_ )52, , alar )% Par )

(5.23)

L=

If we differentiate Eq. (5.17) with respect tor _, we find

(a|r< +l‘> |)"1-l/2C1+1/2(0!il'< +r> l)@r(a[k +l‘> ])

«© A
=P Y Y (—=1ar,)"""2C, L ipnlar, ¥ er )
L=0m = —1
1pe (2)

>

L=Ip"

(— 125 m,|Im|lm — m)ar_ )~ b= l/2-712+ 12lar, )@Z"m?'(m.< ). (5.24)

The equivalence of Egs. (5.23) and (5.24) can be proved by introducing the new summation variable y, = m — m, into (5.24)
and by changing the order of the two / summations.

r

Vi. THE ADDITION THEOREM OF THE MODIFIED
HELMHOLTZ HARMONICS

The differential operator of the modified Helmholtz
equation, 1 — @~ ?V?, can be obtained from the differential
operator of the Helmholtz equation, 1 + o~ 2V?, if the pa-
rameter a is replaced by ic. Consequently, the solutions of
the homogeneous modified Helmholtz equations can be ex-
pressed in terms of modified Bessel functions. This follows
also from the following relationships, which can be proved
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quite easily using known differential and recursive proper-
ties of the modified Bessel functions,

[1 —a VY ar)~ '~ _,_ e Tiar) =0, (6.1)
[1—a™V2l(ar) '~ 2L, 1, lar)¥ ar) =0, (6.2)
[1—a *V?]{er) ™'~ K, 1 plar)¥ Tar) =0. (6.3)

Here, I,(z) is a modified Bessel function of the first kind
(MOS, p. 66),
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o0 (z/z)v+2m
Lig= ¥ —22
/) ,.,z=o mI'v+m41)

- F({Z/Z)v p ol ( _f:") ’

and K, (z) is a modified Bessel function of the second kind
(MOS, p. 66),
K, (2)=7/[2sin(av)][I_,(2) — I,(z)]. (6.5)

The functions of the first kind, Z, {z), increase exponentially
for large arguments z whereas the functions of the second
kind, K, (z), decline exponentially (MOS, p. 139). Conse-
quently, it is not surprising that only the modified Helm-
holtz harmonics which occur in Eq. (6.3) have been of phys-
ical interest so far.

The modified Helmholtz harmonics in Eq. {6.3) may be
considered to be some special B functions which are defined
by42

By =

(6.4)

(2/m!2/[2"* (n + 1) (@r) 17

XK, (an)Z Tar). (6.6)

Because of the factorial in the denominator, B functions are
only defined in the sense of classical analysis if the inequality
n + 130 holds. However, it can be shown that the definition
of the B functions, Eq. (6.6), remains meaningful evenifnisa
negative integer such that n + 7/ <0 holds. In those cases B
functions are distributions which can be identified with de-
rivatives of the delta function.?*

If B functions are used Eq. (6.3) can be rewritten as

[1—a ?¥?*]B™ ,(arx)=0. {6.7)
If the spherical tensor gradient is applied to a scalar B func-
tion, one obtains*

Bo(ar) = (4m)H(—a) "I (VB plar).  (6.8)
If we set in Eq. (6.8) n = — [ we find
7 plar) = (47)' 3 — a) " 'Y P (VIBG (). (6.9)

However, the function B, is proportional to the Yukawa
potential,

BYo(ar) = (4m)~ V2%~ */(ar), (6.10)
for which an addition theorem is known (MOS, p. 107). We
rewrite this addition theorem in the following way:

Bislar, +r.)
=@ 3 S (~1flar )=
=0ma= 1
X 1plar )3 lar B lar, ). (6.11)
Again, r . is the vector with the smaller andr_ is the vector

with the greater magnitude.

The derivation of the addition theorems of the modified
Helmholtz harmonics can now be done in exactly the same
way as the derivation of the addition theorems of the irregu-
iar solid harmonics and of the Helmholtz harmonics. If we
differentiate Eq. (6.11) with respect to r, we find

B” ylarx. +r,)
= (47)""(—a) 'YV, )Bolar
— (2,”,)312 i

L=0m= —1I

+r.)

(= 1ffar )b
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X1 plar . )@Z’f(ar< )

X(—a)"' ¥V, )BTy, ., ). (6.12)
Now we only have to insert the relationship*
{— a)'{’@”il (V)B*2 ;, 41,(a.x)
Amgn (2}
= ) (A pa| A Ap) B L oar)  (6.13)

A= Ao
into Eq. (6.12) to obtain the addition theorem of the modified
Helmholtz harmonics,

+r.)
= (2,”.)3/2 2 2

X1 1 plar )@':. (f—"’< )

1pe (2)

>

min
hL=13

XB™ Mar, ). (6.14)

This addition theorem can also be derived by differentiating
Eq. (6.11) with respect to r _ . We then obtain

B™ lar. +r,)
= (4m)'*( —a)"'F PV
o 1,
— [2,”.)3:‘2 z

L=om=—1

B” lar

(= 1ar )=

{Lm + m,|Im|lym,)

< )‘Bg,o(a’r<
(=) —a)”

+r.)

XYV _Nar.) ™", plar )P ar )
X B n:.l,,l, (a,l'> ). (6.15)

To perform the remaining differentiation we use (MOS, p.
67)

(l—i)mz“’lv(z)—z_" "I, ) (6.16)
z dz
in connection with Eq. (3.1) to obtain
(@)~ planP Tar)

=a~ 'Y (V)ar)" 2L, ar). (6.17)
If we now combine Egs. (3.9), (6.2), and (6.17) we find
a G (Var) =TV, alan P ar)

Amax (2)
= =EA Ay + s A Ao Yar) =5~ 12
XI; o1 plar)Z+ “ar). {6.18)

If we insert this result into Eq. (6.15) we obtain a somewhat
different representation of the addition theorem of the modi-
fied Helmholtz harmonics,

B lar  +r,)
o I
=@ 3 B lar, )
L=0m=—1
jmx Q)Y
X z (— Ve(lym,|im|lymy — m)
L, =17

Xlar )7V plar NPT T M ar ). (619)

To prove the equivalence of Egs. (6.14) and (6.19) we only
have to introduce the new summation variable u, == m, — m
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into Eq. {6.19) and to change the order of the two / summa-
tions.

VIl. SUMMARY AND CONCLUSIONS

In this article simple and unified derivations of the addi-
tion theorems of the irregular solid harmonics, the Helm-
holtz harmonics, and the modified Helmholtz harmonics are
presented. Our derivations are based upon differential rela-
tionships of the following type:

Fr{r)=27(V)é (7). (7.1)

Here, F"(r) is an irreducible spherical tensor, ¢ (7) is a func-
tion that only depends upon the distance 7, i.e., a spherical
tensor of rank zero, and % 7Y(V) is the spherical tensor gradi-
ent which is obtained from the regular solid harmonic % 7{r)
by replacing the Cartesian components of r by the Cartesian
components of V.

The differential relationship (7.1) assumes a particular-
ly simple form for the functions under consideration because
in these cases the application of the spherical tensor gradient
merely leads to a shift of angular momentum quantum
numbers. If the spherical tensor gradient %7V) acts upon
the Coulomb potential which is the irregular solid harmonic
of rank zero we obtain Z [*(r). In the same way we obtain the
{modified) Helmholtz harmonics of rank / by differentiating
the (modified) Helmholtz harmonics of rank zero.

The remarkable differential properties of the irregular
solid harmonics and the (modified) Helmholtz harmonics
can be employed profitably for the derivation of addition
theorems. We simply have to apply the spherical tensor gra-
dient to the addition theorems of the Coulomb potential or
the {(modified) Helmholtz harmonics of rank zero and obtain
the addition theorems of the anisotropic functions.

The idea of applying differentiation methods for the
derivation of addition theorems is not at all new. Methods
that are in some sense equivalent or closely related to our
method, which is based upon the spherical tensor gradient
and its tensor character, have already been employed by
Hobson,! Rose,? Chiu,®> Dahl and Barnett,® Steinborn and
Ruedenberg,® Tough and Stone,” and Nozawa.'* However,
in the references cited the differential operators were applied
in their Cartesian form and the tensorial nature of the differ-
ential operators was not exploited systematically. The direct
application of differential operators, which involve differen-
tiations with respect to x, y, and z to irreducible spherical
tensors, leads to relatively complicated and sometimes rath-
er messy expressions which cannot be manipulated easily. In
our approach we utilize the fact that the application of the
spherical tensor gradient to an irreducible spherical tensor
leads to an angular momentum coupling. Therefore, only
differentiations with respect to the radial variable r have to
be done. It is the systematic exploitation of the tensor char-
acter of the differential operator % 7(V) which makes our
derivation of the addition theorems almost trivial.
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It should be noted that our method for the derivation of
the addition theorem of an anisotropic function is not re-
stricted to irregular solid harmonics and (modified) Helm-
holtz harmonics. If the addition theorem of an isotropic
function ¢ {r) is known one only has to apply the spherical
tensor gradient % (V) to it. According to Eq. (7.1) one then
obtains the addition theorem of the anisotropic function
FPr).
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The problem of constructing the body of a G* manifold is considered. It is shown that any such
manifold is foliated, and the body is defined to be the space of the leaves of this foliation. Under
certain regularity conditions on the foliation, the body is a smooth finite-dimensional real

manifold.

I. INTRODUCTION

In supersymmetric field theories and supergravity one
extends space-time to a “‘superspace,” where four anticom-
muting coordinates appear, as well as the usual commuting
ones. Superspace was introduced as a somewhat heuristic
tool, which proved to be effective in handling very complex
field theories, where one deals with commuting (bosonic) as
well as anticommuting (fermionic) fields in supersymmetry.

Setting up such theories in a proper geometric frame-
work was a bit of a problem, because one was forced to work
either on a space (like superspace) where no proper differen-
tial calculus was established, or on a “supermanifold” (like
those of Konstant and Batchelor) where all the fields are
commuting (see, e.g., Ref. 1). The definition by Rogers? of
G> manifolds seems able to bypass both these shortcomings
in physical application, because these are actually Banach
manifolds, and the natural fields on them are Grassmann
valued. So, anticommuting variables and fields can be treat-
ed on the same ground as the commuting ones.

After the introduction of G* manifolds, some work has
been devoted to the study of their relations with ordinary
real differentiable manifolds. To understand these relations
is crucial in view of possible applications to supersymmetric
field theories and supergravity. Indeed the physical meaning
of such theories can be understood only in terms of represen-
tation of the Poincaré group, that is, after the theory has been
suitably reduced on ordinary space-time. It is therefore im-
portant to inquire to what extent G* manifolds provide ex-
tension of space-time. Also from the purely mathematical
point of view, it seems natural to inquire about the relations
between the category of G* manifolds and that of C* mani-
folds.

This question was already considered by Rogers,? by
introducing the notion of the “body” of aG*manifold. This
definition was stated in terms of local coordinates. After the
work by Jadczyk and Pilch,® Percacci and Marchetti* and
Hoyos et al.® came back to the problem, showing that the
local definition by Rogers did not extend globally, unless the
G* structure was quite peculiar.

* Also at Gruppo Nazionale di Fisica Matematica del CNR.
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In this paper we came back to the problem of defining
the body of a G manifold. Our approach is independent of
charts, and it is based on the fact that any G* manifold is
foliated (as shown in Sec. II). Then the body arises as the
quotient space of the G® manifold by this foliation, which
always exists as a topological space both in the finite- and the
infinite-dimensional case. However, as is usual when taking
the quotient by a foliation, the body does not admit a mani-
fold structure, even at a topological level. A simple example
of this phenomenon, relevant for the present case, is given in
Sec. I11. Finally we show that, under suitable regularity con-
ditions on the foliation, a G* manifold admits a smooth
differentiable structure on its body. Examples of regular
manifolds are the p manifolds of Ref. 5.

To avoid a long list of notation and definitions, we
adopt the notation of Yadczyk and Pilch.? In particular, Q
will usually denote a Banach~Grassmann algebra, and it is
infinite dimensional over the reals. When we speak of finite-
dimensional G* manifolds, we mean a manifold which is
finite dimensional over the reals; so in this cases Q will stand
for a Grassmann algebra with L odd generators (i.e., we iden-
tify @ with B, , according to the notations of Ref. 2).

Il. FOLIATION AND EQUIVALENCE RELATIONS ON A
G~ MANIFOLD

In this section we show that any G* manifold X is foli-
ated. The basic fact is that one can define an involutive sub-
bundle = of the tangent bundle TX, by considering tangent
vectors whose components in any chart have vanishing real
parts.
To be definite, let (U, ,p,) be a G* atlas for X, with
coordinate maps @, : U, —4, CQ ™", and consider the map
€: Q™"—>R™ gotten by taking the real parts. The map £, :
U,—€(Q,)CR™, given by £, = e, is clearly a submer-
sion. Its differential df,: TU,—R™ has a closed kernel.
Then we set £, = ker df,,.

Clearly this local definition extends to a global one, be-
cause a tangent vector v at p belongs to %, |, if and only if its
components in the chart (U,, ¢, ) have vanishing real parts,
a property which is clearly independent of charts. We call
such a vector of type 0. More computatively if v* are the
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components of v in a chart (U, é) ) around p, its components
v“" in another chart (U @) around p are given by

(dz/l) 4, where ¢ cp ‘o@ ~! is the coordinate trans-
formatlon between the two charts. Since ¢ is G*, one has
that e*’) = eldy)? e(v*). Now e(dy)i is invertible, and
hence, being of type o, is independent of charts. Accordingly
two local distributions X, and 24 agree at any peU,nUp,
ie, 2., =25,

From the construction above it is clear that 3 is integra-
ble, its leaves being locally given by the equation
f. = e, = const. Then we give the following definition.

Definition: Two points p,geX are equivalent (p~g) if
they belong to the same connected maximal integral mani-
fold (leaf) of 2.

It is apparent that this is an equivalence relation inde-
pendent of charts, which refines the definitions previously
attempted in the literature.>* To make contact with these,
we notice that if p,q belong to the same chart (¥/,,, @, ), then
[ p) =£.(q) (i.e., having the same real coordinates) implies
that p ~g. The converse is not true in general, because the
intersection of a leaf of 3 with U/, may be not connected.
Hence two points in U, belonging to different connected
components, may very well be equivalent, without having
the same real coordinates.

One may argue that the present equivalence relation is
in some sense unnatural, in that it seems better to start with
the usual local relation**® defined as follows. Whenever

=f,(q). The trouble

with this local relation is that (i) it is not independent of
charts, and (ii) its global extension is not trivial. As to (i), it is
sufficient to notice that if p,g belong to two disconnected
components of the intersection of two charts U,nUp, it may
happen that £, (p) = £, (g) but f5 (p) #/5(q). If @ = B, is finite
dimensional, one can overcome this difficulty by taking a
suitable refinement of the G* atlas of X, as shown in Appen-
dix A. Another possible way out is to assume that X has a
special G*  structure, i.e., that the images
@.(U,nUz)C Q™" are € connected,” or that the manifold is
as in Ref. 5.

Even when the relation ~ is suitably treated to yield

P9€ U, , onesets p ~qifand onlyiff, @)
loc

oC
independence of charts, one faces the fact that it is reflexive
and symmetric, but fails, in general, to be transitive. To get,
in any case, an equivalence relation, one follows the standard
prescription of considering the transitive closure of the sub-

set R .. = [p,g/p~q}, i.e., the minimal RCX XX which
loc

contains R, and is an equivalence relation ~. In other
R
words, oné has that p~q if and only if there exists a finite
R

sequence p;, q;(1 <i < N)of points such thatp, =p,qy =19,
and p; ~¢;. In this form this equivalence has been intro-
!

duced i;c Ref. 5.
Notice that the existence of ~ depends crucially on
R

being independent of charts. In this case, we can show that
the two equivalence ~ and ~ are actually the same.
R

Proposition: Two points p,geX are R equivalent if and
only if they belong to the same leaf of 2.
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Proof: Any curve p(t)CX of R-equivalent points has
tangent vectors of type o. Hence V1, p(t ) belongs to the same
leaf of 2. Conversely if p,q belong to the same leaf of 3, then
there exists a compact curve p(t ) of type o connecting them.
Then we can choose points p; = p(t;)and g; = p(¢ /) such that

pi~giandpo=p,qy =4.
Remark: As already mentioned, the proof above re-

quires that be independent of charts. If not, we stress that

~ cannot be consistently defined, while our equivalence re-
R
lation ~ exists in any case.

lll. THE BODY OF A G~ MANIFOLD

Definition: The body X of a G* manifold Xis the space
of the leaves of 2 on X.

When R equivalence exists on X, one can as well say

that X = X / ~ is the set of R-equivalence classes of points in
R

X

We give X / ~ the quotient topology, thus yielding that
the canonical projection 7: X—X is continuous and open.
The question is now if X can be given a manifold structure.
As is well known, the answer to this question for a generic
foliated manifold is negative. In any case, to build a manifold
structure on the space of leaves, one has at least to assume
that the foliation was regular (see, e.g., Ref. 6).

Thanks to the properties of G* manifolds, we can say a
bit more in the present case. First notice that “concrete” G*
manifolds are built gluing together charts, and giving them
the topology which makes the coordinate maps homeomor-
phisms. Now, around any peX one can define a cubic and flat
coordinate patch (U, ¢7p) centered at p as follows.

Let (U @)bea chart containing p; we set q)p o —@(p)
so that @, (p) = 0@ ™". If (x e X ™) = € (pp (g)eR™ denote
the real coordinates of geU, we consider a cube cCR™, of
width 22, given by |x'|<a.  Then let
U,=¢, ‘(e e}, (U)]. From Sec. II it follows that the
leaves of 2'in U, are parametrized by the real coordinates
(X" x™) = ¢7p (q)e , that is, the coordinate patch (U, :pp)
is “flat.”

The trouble here is that the correspondence between
leaves of 3 in U, » and the real coordinates (x',...x™)is not a
bijection, that is in general one has no maps @, making the
following diagram commutative:

i - ACQm™n

ij
d | -
UP

— — — —> ACR"

?p : (3.1)

If, on the contrary, for any p one has a patch (l_]p , ép) and a
map @, such that the diagram above commutes, we say that
the X foliation is regular. A G* manifold whose 3 foliation
is regular will be called regular itself.

To see that regularity is missing in general consider the
following example.

Example: We construct a torus over Q ;"' If x + 0yeQ,
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with 62 = 0, then we have coordinates (x,y8 }eQ \'. Consider

the intersection of the two strips

(I) afx — I)<y<a(x + 1), (aeR *)

(I —alx+ gy —alx — 1)
and  identify the boundaries of (I} by
@+ b0)>a+ L, (b+a)f) and of (II) by (a,b0)
—(@ — 1,(b + a)@). It is clear that this operation is G* , and
that the resulting torus X hasa G> structure. Now if @ is not
rational, the leaves of 3 are dense on X, and, therefore, the 3
foliation is not regular. From this example we see that regu-
larity is by no means a local property. In other words the
existence of a map ¢ in diagram (3.1} crucially depends on
the global behavior of the leaves of 2. Since ¢, islacking, one
has no coordinates on X / ~, that is, the body of Xisnoteven
a topological manifold.

Although regularity will be difficult to check in a gen-
eric case, one can give sufficient conditions. It is easy to show
that the p supermanifolds of Ref. 5 have regular foliation.
Conversely if the foliation was regular, than the flat coordi-
nate charts are € connected and, the diagram being commu-
tative, it yields a p supermanifold structure on X. Examples
of regular supermanifolds are the G extension of any ordi-
nary C* space-time constructed by Bonora, Pasti, and
Tonin.” )

Whenever X is regular, its body is obviously a topologi-
cal manifold. We can also prove the following theorem.

Theorem: Let X be a regular G* manifold. Then its
body X is a C* manifold.

Proof: Since X is regular, one has an atlas { (T A ,é)p }} and
bijections ¢, making the diagram (3.1) commute. Then one
has bijections @, ¢ ;" :A—B, A,BCR" such that the dia-
gram

U,nT,

A
g
o T~ Pt

T . ‘ B
U,nU, %4
4\1 A%“
B

commutes. Now the transition functions ¢, -@ ;' are clearly
local homeomorphisms. They are also C* diﬁ'eomorphisms
Indeed we can represent them by ¢,-¢ ;7 =€@,9 , 0,
where a A—A is a C= section of A—e(d)=A. Then
@, @, ' arises as a composition of C* maps, and hence it is
C= . The same applies to the inverse ¢, @ ,~ ! Hence Xis a
C> manifold. _
Next, by similar arguments, one proves that if §:.X—X
is a G* diffeomorphism, then there exists a unique :.X—X
which is a C> diffeomorphism and such that the diagram

K w

Pt B

.
.

><<-- N*
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is commutative. So the body X = #{X ) is unique up to diffeo-
morphisms. More precisely one may say that + is a functor
from the category of regular G* manifolds with G= diffeo-
morphisms to the category of C* manifolds with C* diffeo-
morphisms.
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APPENDIX A: THE EXISTENCE OF A “GOOD”
SUPERATLAS

In this appendix we show the existence, in the finite-

dimensional case, of a superatlas in which the ~ relation is
R

chart independent.

The existence of a “good” atlas is a consequence of a
well-known result in the theory of ordinary differentiable
manifold: Let X be a paracompact differentiable manifold of
dim n. Then every open covering { ¥, } of X has an open
refinement { ¥;} such that (i) each ¥; has compact closure;
(ii) { ¥;} is locally finite; and (iii) any nonempty finite inter-
section of the ¥,’s is diffeomorphic to an open ball of R”.
Now, if we have a G supermamfold X modeled on B
with a given superatlas { ¥, , ¢, }, we can consider it as a real
C> manifold of dim N = 2*~'(m + n). In fact, every G*
manifold is a Banach manifold C*, and every G* map
between supermanifolds is also a C* map, and hence there
exists a forgetful functor

F.G* supermanifolds—C> manifolds.

The identification of B 7" with R 2~ "™ + " ig as follows:
We take a basis of B, , {B, ], and set Z* = Z* B, . We then
define a map fAX—»FX, which, on the underlying topological
spaces, is the identity and on suitable atlases { ¥, ¢, } of X
and {¥,, ¢, } of FX has the representation

Qo fUTNZA) = 2.
Now we can apply the proposition above to the manifold FX
getting the “good” covering { ¥;}. We can then transfer the
sets { Vi} on X and we have “good” superatlas
{Vi»@a | v, = @}, where a corresponds to a U, of the origi-
nal superatlas containing V,.In fact, as v, nV is connected
and the @, ’s are homeomorphisms, q), (V. v, ) and qoj (V.nv, )
are connected open sets in B "

We recall now the following proposition (see Rogers?).

Proposition: Let U be open and connected in B 7" and
let feG> (U). Then there exists a unique f£G= (¢~ (e(U)))
such that f’|; = f. It follows from the properties of Taylor
series and the fact that € is an algebra homomorphism that if
x,yeU (U open and connected in B 7"") with €(x) = €(p), then
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€f (x) = €f (). We have then proved that the transition func-
tion fﬁ,, of the “good” atlas are “body preserving,” i.e., if
x,ye@;(V;nV;) are such that €(x) = €(y) then €y, (x) = € (y).
So the relation ~  is chart independent.

'J. Drell and L. Smolin, Commun. Math. Phys. 66, 197 (1979).
2A. Rogers, J. Math. Phys. 21, 1352 (1980).

674 J. Math. Phys., Voi. 26, No. 4, April 1985

3A. Jadczyk and K. Pilch, Commun. Math. Phys. 78, 373 (1981).

“R. Percacci and M. Marchetti, “Categorial properties of supermanifolds,”
Preprint ISAS 3/81/E. P. Trieste, 1981.

5J. Hoyos, M. Quiros, J. Ramirez Mittelbrunn, and F. J. de Urries, J. Math.
Phys. 25, 847 (1984).

SR. Abraham, J. E. Marsden, and T. Ratiu, Manifolds and Tensor Analysis
and Applications (Addison-Wesley, Reading, MA, 1983).

L. Bonora, P. Pasti, and M. Tonin, J. Math. Phys. 23, 839 (1982).

3C. Boyer and S. Gitler, Contemporary Math. 12, 53 (1982).

Catenacci, Reina, and Teofilatto 674



Harmonic analysis on the Euclidean group in three-space

Jung Sik Rno
Departments of Mathematics and Physics, University of Cincinnati—R WC Campus, Cincinnati, Ohio 45236

(Received 13 September 1984; accepted for publication 1 November 1984)

We develop the extensive harmonic analysis on the universal covering group of the Euclidean

group in three-space.

I. INTRODUCTION

This paper is a sequel to our previous work' (called
hereafter Paper 1), which dealt with the explicit computation
of Clebsch-Gordan (CG) coefficients of the (simply connect-
ed) twofold universal covering group of the Euclidean group
in three-space E(3) and special functions associated with
group representations and CG coefficients of E(3) Miller?
initiated the harmonic analysis on E(3) although he did not
identify it as such. The purpose of this paper is to complete
his work by performing the formal harmonic analysis on E(3)
through a new systematic, refined, and rigorous approach.

Physicists have recently been utilizing harmonic expan-
sions to study dimensional reduction. Their interests lie, so
far, in harmonic expansions®® on coset spaces for the fields
that occur in higher-(larger than four-) dimensional theories,
Kaluza-Klein theories and supergravity theories. It is
noteworthy that harmonic analysis on a group yields a har-
monic expansion on a coset space. This is no surprise, since
harmonic analysis requires reduction of group representa-
tions.

We will set up our groundwork in Secs. II and IIL In
Sec. II we give the necessary résumé of E{3) Section III pro-

vides a useful outline regarding how to construct the unitary
J

Ya*—b24+@-bY i@ +b2-a®
nd)=|4li@*— b2 -3 +b%)] Y@ +b*+a*+b?
— (@b +ab) i —ab +ab)

lll. THE UIR OF E(3)

The dual group R of R consists of the unitary char-
acters y : a—e”*for acR *. Weidentify R > with the momen-
tum space P>. Then the group SU(2) acts on P> as well as on
R>. The SU(2) orbit of a given peP> are spheres
2, = { peP>: || p|| = p>0}. Thus we can characterize the
partition of P into orbits by choosing the following set X
representing the standard momentum p:

PP=u(p=ua, (5)
peK p>0
where
K= {P = (0,0,p):p>0}.
Hence there are only two stability groups (little groups),
G, =SU{2), forpefd,,
G, =S0(2), forpen,(p>0), (6)

where SO(2) is the twofold covering group of SO(2), the
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irreducible representation (UIR) of E(3). The full scale of
harmonic analysis on E(3) will be carried out in Sec. IV.

Il. THE GROUP E(3)

In this paper we are concerned with the (simply con-
nected) twofold covering group E(3) of the proper Euclidean
group E(3) [E(3) is often named E(3) throughout this paper].
It is the semidirect product R *X, SU(2) relative to the ho-
momorphism % of SU(2) into the group of automorphisms of
R 3. The matrices + 4eSU(2) determine the same rotation
7(4 ) given by

A(ro)d ~' = (54 o, 1)
where o stands for the Pauli matrices

0
°) a

0 1 0 —i (1
1 = — =
7 (1 0)"’2 (i 2),03 0
The multiplication law for E(3) is
{rio A }{ry, A2} = {r + n(d ), 4,4, (3)
In the following we shall usually write Ar instead of (4 )r. If
a b
(%5 )
—-b a
with a@ + bb = 1, then 7(4 ) has the expression'”
ab +ab

i(—ab +ab) | (4)
ad — bb

!
group of rotations around the z axis, and it is isomorphic to

the multiplicative group of the complex numbers
€%, 0<y < 4. Thus its UIR’s are one-dimensional and of
the form

. ei¢/2 0 N
A% )= "

where2s=0, + 1, +2, ...

The UIR’s associated with the trivial orbit L {2, are of no
interest in the present work. The UIR’s ( p,s) of E(3) associat-
ed with an orbit £2,(p > 0) are given by

[UP(a, 4 )f)(p) = e* (T *1SUQR))( p, 4)f (4 ~'p), (8)
where 1 denotes “induced.”

The carrier space of ( p,s) is H ( p,s), the Hilbert space of
Lebesgue square integrable functions on the manifolds 2,
with inner product

(f&) = fn Fio g(pdwlp) £ geH( p,s), )
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where dw(p)=sinfdfdp for p=(psinbcosg,
p sin Osin @, p cos 0 )ef2,. We recall that the set X in (5)
meets each orbit just once, and itis certainly a Borel setin P>,

Thus E(3) is a regular semidirect product. Therefore one can
conclude!! that (i) every UIR of ﬁ) which acts nontrivially
on the translation subgroup is unitarily equivalent to a repre-
sentation of the form (8) for some choice of constants p and s
and (ii) two such representations U; and U, are unitarily
equivalent if and only if p, = p, and 5, = s,. Further explicit
expression of (8) was given in Paper 1.

IV. HARMONIC ANALYSIS ON E(3)

We aim to complete the proof of the Plancherel
theorem. Thus our task is the reduction of the regular repre-
sentation of E(3). We first prove the following lemma.

Lemma:

UM'SU(Z) Elzl 'D (),

where D (/) is a UIR of SU(2) and = means an equivalence of
representations.
Proof: Let

U P’slsum Eﬂz n(ls)D (1),
=0

where n(/,s) is a multiplicity of D (/).
BY (8),
|SU(2) _F SO(2) lSU(z)
= 2 n(l,s)D (1)
2i=0
Since SU(2)nSO(2) =
theorem'? gives rise to

!
Dy = 3 nbs) 5.

s= —1

Thus we have

L - . » .
SO(2), the Frobenius reciprocity

1, ifls|</,
-]
n{ls) 0, ifls|>1 u
The above lemma is known.'®!* Qur elegant proof is, how-

ever, new.

We consider the Hilbert space H =L (E3)), the ele-
ments of which are complex functions, Lebesgue integrable
with respect to the Haar measure d4 d *r. The inner product
is given by

(f8)=[ fnAkAldddn, fgeH. (10
Q)
We define the unitary (left) regular representation

[(Ulro, Aol U, 4)=flA g (r—ro) A5 '4). (11)
We shall explicitly decompose this representation into irre-

ducible components.
We now define the Fourier transform % for feH

(7 b= (p,4) = )mf e fir, A, (12)

where p-r is the Euclidean scalar product. By the classical
Fourier theorem, we have

(F ') A)=f(r,4)
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- 72—1?133—5 Le—"w}f(p, Adp.  (13)

Then we obtain

stum'f"”‘ 2 d3rdd = LJSU(ZJ}"(,;,A 2d3pdd. (14)

Therefore (13) defines an isometric mapping into
H=L *P>x,SU(2)), the Hilbert space of complex func-
tions, Lebesgue square integrable with respect to the Haar
measure d °p dA.

The regular representation U in (11) induces in H

[U(ro Aof U p, A) =P Fld 5 ' p, A5 4).  (15)
We recall, from Sec. III, that {2, denotes the SU(2) orbit of
the standard momentum p = (0,0, p):
02, = { peP?|| pl| =p}.
We set
fo(pA)=f(p,4),
By (15) we now have
[U(ro, 4olf? 1(p, A) =2 FP (45 ' p, A5 '4).  (17)

Notice that U and U are unitarily equlvalent via
U=% ~'U%. Obviously, we have

H |7, A)? d%p dA
p°J/SU(2)

= f: " dpandw(p)LU(Z‘ | 7(p,4)|? d4, (18)

where dw( p) and dA are Haar measures for {2, and SU(2),
respectively. This shows that the representation U defined
by (15) is a direct integral of the representations defined by
(17). Our problem will be solved if we further reduce these to
simpler representations. We need to recall, from Paper 1,

that the matrix element 4, ,,€SU(2) has the property that
satisfies 4, ,-p = p. Using thls fact, we can write'*

F(pA)=FPlA, b, Ay yd S hA)

=3 3 3 FahagsLa)

forpen,. (16)

2u=0 s= —u m= —u
XT gmldp ) (19)
where T'%,, is the matrix element of SU(2), which is given in

the Wigner D function. [See Eq. (34) and Appendix A in
Paper 1] Since /% ( p, A P__,},A ) is also square integrable on

SU(2), we can further write
Feu(p,4 A)—z S OS Fem TnLAgL4),
=0t= —vn= —vp

(20
where the f posn are functions of p. Choose CeSU(2) such
that Cp = p. Weknow T'%,,(C) =8, ,,e ~ *¢ for some @ such

that 0<@ < 4. We then obtain

Fou(p, C'A) = fou(pA). 1)
Comparing (21) with (20) we can conclude? that
four =0, unlesst=s. (22)

Furthermore, u + v must be an integer. Substituting (20) and
(22) into (19), we see that the functions f ?(p, A) have the
form
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f7(p.4)

v

u A
P,
s,m;s,n

u = - n —v

XT omlAp ) T3, A4, A) (23)
The quantity on the right side of (23) transforms properly
under SU(2). In particular, for fixed s, the transformation
under thelittle group G = SO(2) shows that U (ro, A)in (17)is
unitarily equivalent to ( p,s) when the carrier space is restrict-
ed to H ( p,s). Thus, by our lemma, we can write (23) as

Fled= ¥ 3 3% % S
25= — 0 u=|s| v=|s| m= —u n= —v
XT Ay ) Tonld 5 A) (24)
We shall write f Ly, explicitly. Using (20), (19), and (12)
successively we can obtain

o

P, UYL d 3r

s,m;s,n

dA {um|pslonlr,A)f(r,4), (25

R3 SU(2)

where {u,m| p,s|v,n}(r, A )is the matrix element of the opera-
tor UP*(r,A) with respect to the orthonormal basis of
H (p,s). We refer its details to Paper 1. The bar on the matrix
element signifies its complex conjugate. Thusf D 1S €xACt-
1y a matrix Fourier coefficient of /. Also making use of those
appropriate inversion transforms, we can derive without any
difficulty

flrnd)=

—z —ZH Tl m= —Z 0p2dp

Xf o {um)| pislo,n)(rd), (26)

where we have used, from Paper 1, the orthogonality rela-
tion for the matrix element

f d’r
R? SU(2)

dA {ubmhl pl’sllvbnl}(r’ A )
X {Ug,15 P3s52| V2575 }(r, 4)

= _:Tﬂ- 6( P1— p2)'5s.,s2 '5m,,m, '6u,,u, "Sn,,n2 '50,,u2 . (27)
1
From (14), (18), and (23) we can finally obtain the Plancherel
formula for E(3)

J; |fir, A)2d%rd4
E(3)

0 0 o u v S0
-5 55 5 3 [Timmree
—wu=|slv=|sfm= —un= v JO

— (28)

Notice that the variable p and indices s, «, v, m, and n repre-
sent the dual space of E(3), which is usually denoted as %S
Thus we have proved the following.

Plancherel theorem: There exists a Fourier-Plancherel
transform, which is an isometric mapping between L *(E(3))
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and L 2(f‘(.?)) with a natural measure as it appears in (28). This
mapping is given by (25) and (26).

We remark that the Plancherel formula (28) can be ex-
pressed as

® o0

16 = o Il 7ol

where ||| F(p.5) )I||? = trace{ Flo.5), F*(p.s)} is the Hilbert-
Schmidt norm of f (p»s) whose matrix elements are f e
The above type of theorem, in general, is valid for the locally
compact, separable, unimodulator, and postliminar group.'*

Finally, we wish to comment, from a physicist’s view-
point of dimensional reduction, that (26) is a harmonic ex-
pans1on of a scalar field in six (=3 + 2* — 1)-dimensional
spaceR X , SU(2)expressed on the coset spaceR X, SU(2)/
SU(2), whlch is three-dimensional.

pdp Y

—25= — oo
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Let f(x), x€R, be a fourth-degree polynomial with |)}Iim f(x)= 4+ o« with two minima, and let

L.(-)=€/293%-)/dx*+ (3 /dx)( - )(df /Ix)) be the corresponding Fokker—Planck operator.
We study the spectrum of L, in the limit e 0. We show that in the limit €0 the spectrum of L,
degenerates in the spectrum of three decoupled harmonic oscillators.

I. INTRODUCTION

Asymptotic eigenvalue degeneracy due to singular per-
turbations is a common phenomenon to many different
fields of applied mathematics such as quantum mechan-
ics,'® statistical mechanics, and quantum field theory.’

In this paper we study the behavior as the diffusion
constant goes to zero of the spectrum of a class of one-dimen-
sional Fokker—Planck operators. The problem considered
here can be considered analogous for the Fokker-Planck
equation of the anharmonic oscillator problem for the
Schrédinger equation studied in Refs. 1, 2, and 4. In particu-
lar, we will follow the path of Isaacson in Ref. 2.

Let us consider the Smoluchowski approximation to
Langevin’s equation®®

dx(t)= — 9 (x(t))dt + € dwlt) ,

ox
where f :R—R is a smooth function called potential, R is the
real line, € is a real parameter, and w(t) is a standard one-
dimensional Wiener process. Equation {1.1)is an Ito stochas-
tic differential equation widely used in mathematical physics
and engineering, whose solution x, (¢ ) is a stochastic process.

The transition probability density p, (x,x,t ) of x.(¢) is
defined as

Pexxot JAx=P, {x(t)e(x,x + dx)|x(0) = xo} , (1.2)

where P, { - |} = probability of { - } and p, (x,Xe,? ) is the solu-
tion of the Fokker—Planck equation

(1.1)

ap

——=L_(p), xR, t>0, 1.3
E (p) (1.3)
where L_( - ), the Fokker—Planck operator, is given by
edp 9 ( af )
L(p)=—-—-<+—|—r], xR, 1.4
Pl=F o T o (o ? (14

subject to the condition

* Permanent address: Istituto Matematico, Universita di Salerno, 84100 Sa-
lerno, Italy.
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lim p,(x,x0,¢ ) = 8(x — Xx,) » (1.5)
—0

where & ( - } is the Dirac’s delta.

The problem of deriving asymptotic formulas as e—0
for the first nonzero eigenvalue of the Fokker—Planck opera-
tor has been considered for a long time both on physical and
mathematical grounds. We refer for reasons of brevity only
to the recent paper by Matkowsky and Schuss,'® where sev-
eral Fokker—Planck operators, including some two-dimen-
sional ones, are considered.

However, the problem of studying the spectrum of the
Fokker-Planck operator as e—0 has received much less at-
tention. In this paper we restrict our attention to the one-
dimensional case when L, is given by (1.4) and f'is a fourth-
degree polynomial with two minimizers.

Even in this particular case the resulting problem is an
interesting singular perturbation problem for the ordinary
differential operator L,.

The interest of one of us (F.Z.) in the study of the asymp-
totic behavior of the spectrum of the Fokker—Planck opera-
tors arose in the study of a method for global optimization
based on the use of suitable stochastic differential equa-
tions.!!

In Sec. I1 the eigenvalue problem for L, is reduced to an
eigenvalue problem for a suitable Schrédinger Hamiltonian
H, . The particular Schrodinger Hamiltonian obtained when
fis a fourth-degree polynomial with two minimizers is stud-
ied in detail. In Sec. III some approximating Hamiltonians
that will be used later are introduced and studied. In Sec. IV
all the basic estimates needed to prove our main results are
proved.

In Sec. V a theorem concerning the behavior as e—0 of
the difference between the resolvent of H, and the resolvent
of the approximating Hamiltonian is proved. Moreover, the
asymptotic behavior as e—0 of the spectrum of H,, and as a
consequence of the spectrum of L., is considered. In Sec. VI,
using the Rayleigh—~Ritz principle for H,, a particularly sim-
ple asymptotic formula for the first nonzero eigenvalue of L,
is obtained. Finally, in Sec. VII the case when fis given by a
general smooth function is considered formally, and some
conclusions are drawn.
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il. FROM THE FOKKER-PLANCK EQUATION TO THE

SCHRODINGER EQUATION
Let us consider the eigenvalue problem
L (uy=Au, AeC, xeR, (2.1)
where L, is given by (1.4). '
Let us consider the change of variables
y=(V2/ex, (2.2)
oy) = 2 ulleVD)y) (2.3)
where ¢, is a normalization constant and
f(9)=(2/€)f(e/v2)y) . (2.4)
The eigenvalue problem (2.1) becomes
Hoy= —Av, AeC, yeR, (2.5)
where
d 2
H = - e + W(y) (2.6)
and
Wy = i(—1—(‘”‘ )2 - dz’:‘) . (2.7)
2\2\dy dy

Let us note that H, is a Schrodinger Hamiltonian. It is
easy to verify that

—Jfdn2

vo(¥) = ct%e , JER (2.8)

is a solution of (2.5) when A = 0. Corresponding to vy( y) we
have

~@ASW | xeR, (2.9)

the solution of (2.1) when A = 0. Since we would like to inter-
pret uq(x) as the probability density of a random variable we
will assume that

uglx) =c.e

+ oo
f e~ WM gy o o | We#O, (2.10)
and we will choose
+ o —1
. = (J' e— /€)1 f(x) dx) , (2.11)
so that
+
J- uglx)dx = 1. (2.12)

Condition (2.12) means that uy{x)cL (R). This implies
that vo( y)eL %(R), where L #(R) is the Lebesgue space of index
P so that it is natural to study the spectrum of H, in L }(R).

In this paper we will consider the case when f(x) is given

by
filx)=x*—a??, a>0, xeR, (2.13)
or by
folx) = x*ax* + bx +¢), xeR, (2.14)
where @ >0, a, b, ¢, are real constants and
a>o0, (2.15)
b% —4ac<0, (2.16)
962 — 32ac>0, 2.17)
b<0. (2.18)
679 J. Math. Phys., Vol. 26, No. 4, Aprii 1985

Since the spectrum of H, is invariant with respect to
adding a constant to f; to making translation on the x axis, or
to changing x into — x, fj(x) represents the most general
fourth-degree polynomial with two global minimizers (Fig.
1), and f5(x) represents the most general fourth-degree poly-
nomial with one global minimizer and one local minimizer.
Let us remark the following: (2.15) and (2.16) imply that
f-x)>0, VxeR, with f3(x) = 0cx =0; (2.17) implies that
[ (x) = O has three real roots 0, x,, x, and that f " (x) = O has
two real roots [that is, x, is a maximizer of f, and x, is a
minimizer of f,(x)]; finally (2.18) implies that 0 < x, < x, (Fig.
2).

A straightforward computation gives

dfi. \* d?
=350 - %)
= €9° — 4%y + (da — 3 + 202,
1 d . 2 d 2 .
00=5{3{%) ~ %)
= 1y%(2a€’” + (3be/V2) y + 2c)* — }(6a€*y*
+ (6be/V2) y + 2c)
= a’e*y® + (3ab /V2)EY’ + (§ b2 + 2ac)ey*
+ (3bc/V2)ey® + (c* — 3a€?) y* — (3be/V2)y —c.
(2.20)

In order to understand intuitively the behavior as €0
of the spectrum of H, when the potential W, ( y) is given by
V. or U, let us analyze the behavior of ¥, and U, when
e—0.

Proposition 2.1: Let V_{ y) be given by (2.19). Then V_( y)
is an even sixth-degree polynomial. There exists €, > 0 such
that for 0 < € < €, we have the following.

(i) The equation

dv. (5)=0
dy =

has five real roots

(2.19)

(2.21)

1
y=0’ y=+x—
€

That is, V, has a local minimizer at y = 0, two global mini-
mizersaty = + (1/€)((4a® + J4a® + 9€7)/3)"/2, and two lo-
cal maximizers aty = + 1/¢((4a® — y4a® + 9€%)/3)!/%

(ii) Since V() is even let us consider only y> 0. By
explicit computation it is easy to obtain Table L.

(iii) V. (y) is bounded below by a constant independent
of e.

(4(1221: 4a® + 9 )1/2
3 .

f,(x)

FIG. 1. The case of two symmetric wells.
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X, X, X

FIG. 2. The case of two nonsymmetric wells.

(iv) V() is given by Fig. 3.

Proposition 2.2: Let U,(y) be the sixth-degree polyno-
mial given by (2.20). There exists €,>0 such that for
0 < € < €, we have the following.

(1) We can consider the points

y=0, y=W2/ex,, y,=V2/ekx,,

where x,, =(—3b 957 —32ac)/8a are such that
(df,/dx)ix; ;) = 0, and the points

1 =V2/eé,, 1,=WV2/€,;,

where £, =(—3b Fv95? —24ac)/12a are such that
(d?fo/dx?)&,,) =0. Let us remark that (2.15), (2.16), and
(2.17) imply that £, , are real (i.e., 95 % — 24ac > 0). More-
over,0< &, <x, <&, <x,s0that 0 <9, <y, <, < ¥y
{ii) We have
Uiy =0Sfiefie =S5,
=M ([ + S 0] =45,
where the primes mean differentiation.

{iii) By explicit computation from {ii} it is easy to obtain
Table II. Here, c,=1(d?%,/dx*)(x,)<0, c,=}d?*/
dx?)(x,) > 0. Moreover ¢ = 2axx,, ¢, = 2ax,(x, — X,), and
¢, = 2ax,{x, — x,).

{iv} From Table II we can deduce that the equation

4dU,

dy -
has five real roots so that U, ( y) has three minimizers and two
maximizers.
{v} U.{ y}is bounded below by a constant independent of

(2.22)
(2.23)

(vi) U,( p) is given by Fig. 4.

From Proposition 2.1 and Fig. 3 it follows that as e—0,
V_{ y) approaches three independent harmonic oscillator po-
tentials, one with vertex at y = 0 and equation 4a*y” + 2a?

Let H, be given by (2.6) and W_(y)=
Then the eigenvalues in {2.5) are given by

—AV=42’n+1), n=0,12,.. (2.24)

The eigenvalues corresponding to the remaining two har-
monic oscillators are

4a%y? + 2a°.

— AP =8a’n, n=01,2,.., (2.25)
— AP =8a’n, n=0,1.2,... (2.26)
In Sec. V we will prove that the eigenvalues of

M, = ;" + V.3, yeR (2.2

approach (2.24), {2.25), and (2.26) when €—0. In particular,
we will show that the first eigenvalue A, = 0 as €0 has
asymptotically multiplicity 2 [i.e., 4,{¢}—0 when ¢—0] as
can be seen from (2.25) and (2.26) when » = 0. Moreover,

li_rg ~ Ay anl€)=4a*2n+1), n=0,1,2, (2.28)
as can be seen from (2.24}, and
181_12 — A3 anl€) = 1&1{% — A4 anle)
=1lim — A , 4,(€) = 8a’n + 1),
€0
n=0,12,.., {2.29)

as can be seen from (2.24), (2.25), and (2.26). Therefore, M, as
€—0has eigenvalues with multiplicity 1 [i.e., the eigenvalues
coming from (2.28)] and eigenvalues with asymptotic multi-
plicity 3 [i.e., the eigenvalues coming from {2.29}].

From Proposition 2.2 and Fig. 4 it follows that as 0
U, { y}approaches three independent harmonic oscillator po-
tentials, one with vertex at y = 0 and equation ¢*y* — ¢, one
with vertex at y = y, and equation ¢ (y — y,)* — ¢, (c; <0),
and one with vertex at y = y, and equation c2{y — y,)* — ¢,
{c,>0).

Let H, be given by (2.6)and W,_( y) = c¢’y* — c. Then the
eigenvalues in (2.5) are given by

—AV=@2n+le—c, n=0,12,. (c>0). (2.30)

The eigenvalues corresponding to the remaining two har-
monic oscillators are

—AP=0@2n+ )¢, —¢,, n=012,., (c,<0), (2.31)
AV =(@2n+1l)c,—¢,, n=012,.. (;>0). (2.32)
In Sec. V we will prove that the eigenvalues of

. > _ * d
and4 two with ve;-tlces at y= + (V2/€)a and equations N.=—2_4Uly), R (2.33)
16a*(y F (v2/e)a)’ — dy
TABLE 1. The potential ¥,( y). Here the primes mean differentiation with respect to y.
o 4o — J4a® 7 9 af6 a2 4a® + m?
7 3e 3¢ €
V.(5) 207 2 _(8a® — 27a%¢ 32a° _4a? —2_ (845 — 270
¢ 27¢ 27¢ 2752
(46(4 + 962 3/2) (404 + 962)3/2)
Viy 0 0 — 2aef6 — 6aeV2 0
Vety Ba' - 6¢” Y4a* + 9€) ~ %"~ 6€ 20— 6 y4a’ +9€)
— d4a*f4a® + 9¢%) + 4a*4a®* 1 9¢%)
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FIG. 3. The potential V( y).

approach (2.30), (2.31), and (2.32) when e—0. In particular,
we will show that the first eigenvalue 4, = 0 as €0 has
asymptotically multiplicity 2 [i.e., 4,(€}—0 when e—0]. The
remaining eigenvalues, since ¢, ¢,, ¢, can be expressed in
terms of a, x,, X, as shown in Proposition 2.2 (iii), have as-
ymptotically multiplicity 1 if x,/x, is irrational and have
asymptotically multiplicity 1 or 3 if x,/x, is rational.

{ll. THE APPROXIMATING HAMILTONIANS

Let % & (R) be the space of the infinitely differentiable
functions of compact support. Let 4,: % (h,) C L *(R)—L *R)
denote the self-adjoint extension of — 32/dy* and let Z( y™)
denote the domain of the self-adjoint multiplication operator

The Schrodinger Hamiltonians M., N, as operators on
L *(R) possess the following properties.

Theorem 3.1: For any eeR with €#0, we have the fol-
lowing.

(i) M, is essentially self-adjoint on € §(R) and is self-
adjoint on Z (h)nZ( ¥°).

(i) M, has compact resolvent.

TABLE II. The potential U,( y). Here the primes mean differentiation.

FIG. 4. The potential U, ( y).

(iii) The eigenvalues of M, are nondegenerate.

(iv) The eigenfunctions alternate parity and the one cor-
responding to the smallest eigenvalue is even.

Proof: See Refs. 6 and 12.

Theorem 3.2: For any eeR with €#0, we have the fol-
lowing.

(i) NV, is essentially self-adjoint on € ¢(R) and is self-
adjoint on D (ho)nZ ( °).

(ii) NV, has compact resolvent.

(iii) The eigenvalues of V, are nondegenerate.

Proof: See Refs. 6 and 12.

Let 4, = [y|y>aV6/3€}, 4,={y||yl<aV6/3€},
A_ = {y|y< — a\/6/3€} and define V,, as follows:

y 0 M N 72 V2
AP —c Sl = S e e
v S —lEme —Se) - SE) —Sfiw)
vz 2ot i) @-Sotw nerre) x-St
- sl - s
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r - 1\2
4a4(y_£_fé__1_(y_a_JG) ) 4,
de 2v 3e
when yed .,
v
Vil ={ oagy ~ ot 28 When yeds,
. ﬁ_L( a_@)“)z_mz
4“(”+3e 2w VT 3¢ ’
L when yed _
(3.1)
(see Fig. 5), where
1 E_VZ_a_ﬁ)’_E 3-v3y:
2v—(e 3¢ —6‘2( 3 )’ (3-2)
B = (w/2)(3e/a\f6), (3.3)
Vo = (32/3)(a®/7%€) . (3.4)

The function ¥, as e—0is an approximation to V. In parti-
cular, ¥, approaches three independent harmonic oscilla-
tor potentials, one with vertex at y =0 and equation
40*y? + 2a? and two with vertices at y = + av2/€ and
equations 16a*( y T (@v2/€))* — 4a’.

Let 0 < 7,(€) < av6/3€, 0 < 7j,(€) < 1/42v with

lim 7j,(€) = lim 7,(€) = o0, (3.5)
€0 €0

lim €7, (€) = lim €7j,(€) = 0. (3.6)
€e—0 €—0

Given 7 ,{€) we choose 7,(€) to be the smallest solution of
Vael ile€)) = Vacllav2/€) — 7sle)) - (3.7)
A straightforward computation shows that (3.7) can be
solved and that 7,(e) should be of the same order of 7,(¢) for

é—0.
Let

I'? = { yeR|%,(€) <y < (aV2/€) - 7€)} , (3.8)
1= { yeR| — (@V2/e) + el <y < —Tle)} . (39
We define
Vaely ), when yal (le)UI [25, ’
Vil = [Vk( e, when yergury 010

(see Fig. 6). Note that ¥,, is a continuous function because of
Eq. (3.7), and as €0, ¥, is an approximation to V, in the
same sense as V.

Let us now consider the operators

2
cos® By sinByF(5+ d ;_ 1 , —

0

ne —

n—1 3

2 2

where F (x,,X,,x5,2} is the hypergeometric function and & is
defined by the equation
Vo=B%%06-1), é6>1. (3.22)
The eigenvalues of (3.13) are given by 19, and 4 %,
n=0,1,2,.... The eigenvalues 4 £ have multiplicity 2.
Moreover as €—0,4 3., 4 £ approach the eigenvalues (2.24),
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, —, sin? By) , when #n is odd,

FIG. 5. The potential V,,( y).

2
MP=_ 2% v, wR, (3.11)
dy
d2
M= ——+7V,, yeR. (3.12)
dy
We will use them to approximate M,.
The eigenvalue problem for M@
M%) =4v, yeR, veL*R), (3.13)
can be reduced to the following eigenvalue problems:
M%P%=Av, yed,, velL*4.), (3.14)
M®% =Aiv, yed,, veL¥A,), (3.15)
MP=4v, yed_, vel*4_). {3.16)

The eigenvalue problems (3.14), (3.15), and (3.16) can be
solved explicitly. In fact the eigenvalues and eigenfunctions
of (3.14) and (3.16) are given by'>'*

ALf=4a*2n+y—a*/v], n=012,..,
$ & =N, [22°(y F (@V6/3e)] 7+

xew| o348 Jerarr 50 |
3e 3e
(3.18)
where N, is a normalization constant, L " are the general-
ized Laguerre polynomials, ¢, is defined for y > a\/6/3¢,
¢ - is defined y < — a\/6/3¢, and
y = (1/2v\4a® + 47 . 3.19)

The eigenvalues and eigenfunctions of (3.15) are given by’

Are =B n* +62n 4+ 1)] + 222, n=0,1,..,

(3.17)

(3.20)

cos’ ByF (6 + % , —:2—’1— , 1 , sin? By) , when n is even,

(3.21)

|
(2.25), and (2.26) of the three harmonic oscillators considered
before.

The eigenfunctions of (3.14) satisfy &, (ay6/3¢)
= (d¢ ;- /dy)(a\6/3€) =0, so that corresponding eigen-
functions of (3.13) can be obtained, extending ¢ % (y) with
zero for yéA . Similar statements hold for the eigenfunc-
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B a® avZ
e 3 €
+ 1 1 Jorm

FIG. 6. The potential ¥, ().

tions of (3.15) and (3.16). Moreover, since the eigenfunctions
of (3.15) are even or odd and the eigenvalues 4 £ of (3.13)
have multiplicity 2, the eigenfunction of (3.13) can be chosen
to be even or odd.

Let 3 (R — | + a/6/3€}) = { f| fis € = and of com-
pact support and is zero in a neighborhood of y = + a+/6/3¢
andy = — a\/6/3€}. We have the following.

Theorem 3.3: M2 is essentially self-adjoint on Z (R

— { + aV6/3€}).

Proof: It is a straightforward modification of Isaacson,?
Appendix 2.

Theorem 3.4: M ") is essentially self-adjoint on € §(R).

Proof: 1t follows immediately from Theorem 10.23, p.
315 of Weidmann.'¢

A, ={yly>mn},

— T <Y<N2)
A_={yly<p —n,}

and define U,, as follows:

fc%( L Ly
VT Ty ) T
when yeA +
U, ={ (Vo/cos’B(y —y,) — Vo —c¢,, when yed,,
1
=y =y =) — ———] —c,
[ ' ? viy— (2 — 1)
\ when yed _
(3.23)
(see Fig. 7), where
1/2v, = (y, — )%, (3.24)
172y, = (2p, — ml)?, (3.25)
B=(m/2)[1/(n, = y)], (3.26)
Vo=c2/B2. (3.27)

Let us remember that y,, y,, 1,, 17, depend on € (Proposition
2.2). It is easy to check by explicit computation that
2y, — 9, > 0 so that the function U,, (Fig. 7) as é—0 is an
approximation to U,. In particular U,, approaches three
independent harmonic oscillator potentials, one with vertex
y = 0 and equation c’* — ¢, one with vertex at y = y, and
equation ¢} ( y — y,)* — ¢,, and one with vertex at y = y, and
equation c(y — y,)* — ..

Let p(€), pale) psl€)>0 and let J = { yeR| py(e)
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e

.
T T
y

/yl " n T \j ’

FIG. 7. The potential U,,(y).

-C

<y <y =€)}, I = { yeR|y: + p,l€) <y <y2 — psle)}
be two intervals such that 2y, — 7,&J'¢ and 7,&J ¢, such
that
Uselpr(€)) = Usze( ¥ — pol€)) (3.28)
Uselp1 + pol€)) = Uy (32 — pale)) (3.29)

and JJ¥ = {4]. Note that because of symmetry

Use( ¥, — p2(€)) = Ure( p1 + pol€). Finally, we will later
need
lim U, (31 Fole)) = oo - (3.30)
Let us define
Usely), y&J “’uJ o,
Uie(y) =1 Vsey1 — pole)), yeI 9, (3.31)
Vze 1 — pale)), eI 9
(see Fig. 8). Proceeding as before let us now consider
d 2
N = _ pe + U, , yeR, (3.32)
d 2
Nl= —-—+7U,, peR. (3.33)
dy’?

We will use them to approximate NV, .

The eigenvalue problem for N can be solved analo-
gously to the eigenvalue problem for M 2. In particular as
€—0 the eigenvalues of N ) approach the eigenvalues (2.30),
(2.31), and (2.32) of the three harmonic oscillators considered
before.

Let €5R ~ {20, — 7.} — { 1)) = {f|fis €= and
of compact support and is zero in a neighborhood of
y =2y, —n,and y = 7,}. We have the following.

\

FIG. 8. The potential U, ().
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Theorem 3.5: N'? is essentially self-adjoint on € (R
= {1 -] — | "72})
Proof It is a straightforward modification of Isaacson,’
Appendix 2.
Theorem 3.6: NV is essentially self-adjoint on % & (R).
Proof: It follows immediately from Theorem 10.23, p.
315 of Weidmann.'®

IV. THE BASIC ESTIMATES

We will prove here some estimates that will be used
later.

Theorem 4.1: There exist constants z,> 0, €,>0 such
that when 2>z, and 0 < € <€, we have

(M, +2P>V%, on CLRIXLE(R), (4.1)
(MDY 4+ 225B8V3, on €FRIXEIR), (4.2)
(M? +2P>BV3, , on R — { + aV6/3€})

XE R — { + aV6/3€}), (4.3)

where 0 < B <1,
Proof: Let us first prove (4.1)and letp = i d /dy. Then as
aform on Z $(R) X Z & (R) we have

(M, +2P=(p"+ V. +2
=P +Vi+ 2V . +2+ (V. +2p- V.
4.4)
Since ¥, »const independent of € when 0 < € < €,
pVe +2pp>0, on CFR)XEF(R), (4.5)

for z large enough. From (4.4) and (4.5) we have
M, +2P—Vi2V, +22—V?, on €FRIXEZR).
{4.6)

To prove {4.1} it will be enough to show that for z>z,
and 0 <€ <€, we have

F(y)=22V,. + 2 - V750, yeR. 4.7)
Let us define

t=y*, A=22e, B=8za%+ 30¢*,

C = 2{4a* — 3€%) + 48a%¢,

D =4za* + 7* — 8a* + 6€>.
A simple computation shows that

Fi{t)=t{At>—-Bt+C)+D, 1>0. (4.8)
Let us first note that when z>2(v3—1)a? and

0 <€ <2a%V3/3) we have 4,B,C,D positive. Consider now
the parabola

At* —Bt+C. 4.9

Since 4 >0, the parabola (4.9) will have a minimizer at
to = B /24, where

At} — Bty + C = (44C — B?)/44
= — (€2/22)(225€* + 24a’z + 1229)<0.
(4.10)
Moreover, the equation 4#2 — Bt 4+ C = Ohas tworeal roots
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B+{B*_44C

O<t, = &
! 24 A

B— JBT=44C
24 <h=

Therefore, ¥1>0
Fy(t)>(B/A)At] — Bty + C)+ D
= 7% — 20’z — 56a* — 84¢>
— 630(a®€*/z) — (3375/2)(e*/2%), (4.11)

and this last expression can be made positive for z> z, and
0 <€ <€, choosing z, and €, The estimate (4.1) is estab-
lished. 3

Let us now prove {4.3). Let 0 <8 < 1. Proceeding as we
have done in proving (4.1), we obtain as a form on € (R
— { £a/6/3¢})X €5 (R — { + ay/6/3€})
M2+ 2P — BV > =BV + 22V, + 2~ V5, .

4.12)

To prove (4.3) it will be enough to show that for z > z,,
0 <€ <€, we have

(1=BW2 +2V, +22— V.30, peR.  (4.13)
For yeA, formula (4.13) becomes

2+ 2AVug By + 2072 + [(1 — B)Vo1gBy + 20°
— 8a*(2 sin? By + 1)/cos* By] . {4.14)

When | p|<7/48 we have cos® By>} and sin® By<}, so that
the expression {4.14} is greater than or equal to

2% + 4o’z — (60 + 4B)a* >0,
when z>(J64 + 48 — 2)a’ and Ve > 0.

When 7/4B8<|y|<7/2B we have sin’By>} and
cos’ By<} so that expression (4.14) is greater than or equal to

(4.15)

z2+4a22+ [(1 — BV sin* By
—8a*2 s1n26y+ D1>22 + 42’z + 4[((1 = B)/4WV?
— 240130, (4.16)

since ¥, given (3.4) goes to infinity when e—0. The last in-
equality in (4.16) holds Vz> 0, 0 <€ <3(@®/7)(6(1 + B))*'*.
For yed , formula (4.13) becomes

z +2[4a4( —5£~J~—l——)2 4a2]z

3e v y— (af6/3€)
1 -B)faat(y- 28
€
1t )2—4052}2
v y — (aV6/3€)
3 1
— 824142 ————)50. 4.17
a( +4V2 — {a/6/3€))* ) @17

With the substltutlon t=2vy — (@/6/3€))* expression

(4.17) becomes

t%(z? — 8a°z — 8a?) — 24a*
- 4a4 2
+{1—B)[—-——(t-~1)2—4a2t] >0, 0. (418
2v

When 73>} and z such that (> — 8a’z — 8a“) is positive, the
left-hand side of (4.18) is greater than or equal to
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}(2? — 8a%z — 8a*) — 24a*>0,

for z>(4 +2/30)2*, €>0. (4.19)

When 0 <7 <} and z such that (z* — 8a”z — 8a*) is positive,
then the left-hand side of (4.18) is greater than or equal to
— 240 + (1 = B)[(4a*/2v)t — 1)> — 42t ]2. (4.20)

The expression (4.20) is positive for 0 <€ <€, since v
given by (3.2) goes to zero as é—0.

The proof of (4.3) for yed _ is analogous to the proof
given for yed | and will be omitted.

The estimate (4.3) has been established.

Let us now prove (4.2). Let 0 <8 < 1. Proceeding as we
have done proving {4.1), we obtain as a form on % J(R)
X% §(R)

(MY + 27 — BV >(1 =BWVi + 2V + 2= V..
(4.21)

To prove (4.2) it will be enough to show that for z > z,,
0 <€ <€, we have

(1=BW3i + 2V, +2— V>0, yeR. (422)

Let ¥ yo, 710 e the characteristic function of 7 {fur §. We
have

Vie=V3ll _xl(“\”&ﬂ) =8y — 7))+ 6(y+ 7]
—C,[8(y — (@v2/€) + 7))

+8(y + (@v2/e) =T, (4.23)

where & ( - ) is the Dirac’s delta and
¢, = 2BV,|cos > B, sin B7,[>0, (4.24)
>0, (4.25)

Z = 8(14 1 mﬁ 1
o [ |- ——
T (1 —V2v7,f
are the absolute values of the jumps at y= + 7%, and
y= +(@v2/€) — 7)) of V..
Since V,. = V,. when yeR\ {90l Y} we can rewrite
equation (4.22) as follows:
(1 ‘X,gsug:){(l —B)\Wi + 22V, +2—V3.}
+X,ge)u,g»{(1 —BWA(T) + 22V () + 2

+ ¢, {8(y — 7)) + 8(y + 71)}
+¢,(8(y — (av2/€) + 7)
+8(y + (@v2/e) - 7,)} >0. (4.26)
In fact for z>2,>0, 0 <€ <€, we have {(1_—[3)V§€
+ 22V, +22 —~V35.}>0. Moreover {(1 —B)V3(7,)
+ 22V, (7,) + 2} >0 and ¢, >0, ,>0.
The estimate (4.2) is established.
Let ¢ be a constant such that

V.=V, +2>0, and (V. +8P>V?, (4.27)
V.=V, +&>0, and (V;. +&°>V2, (4.28)
Vo=V, +¢>0, and (Vy +22>V2, . (4.29)
We define
N d? o \
M‘="§y-2+ V.=M_+2¢, (4.30)
685 J. Math. Phys., Vol. 26, No. 4, April 1985

A 2 o
B = _%+ Ve =MY e, (4.31)
4
freo— _ 82 P Mo (4.32)
e — dy2 2 — € ‘ *

Theorem 4.2: There exist 2, > 0 and €, > 0 such that for
z3z,and 0 < € < €, we have

(M, + 27572, on CSRMXZR), (4.33)
(MY 4225872, on CeRIXLS(R), (4.34)
(M? +2253V3,, on €R— { + aV6/3e}

XEER— [ +a6/3e}), (4.35)

where 0 <B < 1. R R
Proof: It follows from Theorem 4.1since V', = V7, V2
>V'%,and ¢ > 0and from the similar statements for V', V.,
VZe ’ V2€ ‘
Theorem 4.3: There exist z,> 0 and €, > 0 such that for
z>z,and 0 < € <€, we have

I, +2~"wl<|P .0l VyeL *R), (4.36)
M0+ 27 'YI<U/BYV 'Yl YYeL’R),  (4.37)
M2+ 27 Pl<(1/B AV 9l YyeL2R). (4.38)

__ Proof: Note that (4.27), (4.28), and (4.29) imply 7., ¥,..

V,.>const>0sothat ¥ !, V [, V ;; ' are bounded opera-
tors. The proof of Theorem 4.3 follows immediately from
Theorem 2.21, p. 330 of Kato.”

Definition 4.4: Let P, be the projection on the subspace
of the functions of L *(R) that have support on J {'ul ¢, That
is, P, is the multiplication operator given by y e

Definition 4.5: Let P, be the projection on the subspace
of the functions of L %(R) that have support on R — U9,
where

U= {yl| y| <T(€)}u{ ¥]| y — (aV2/€)| < Taf€)}
Ui yl|y + (@v2/€)| < Byle)] -

That is, P, is the multiplication operator by y, _,«. Let us
now choose

Tle)=e™™, 0<8<}.

Then 7,(€) will remain determined by Eq. (3.7).
Theorem 4.6: Let 7,(€) be given by (4.39) and 7,(€) be

determined by (3.7). Then for O < € < €, we have the follow-

ing estimates:

(4.39)

”(’,}ze - i)le)(l —P)|| =0, (4.40)
1752 (P — P )Pl <comst, (4.41)
|¥ iz 'Pyll<const € , (4.42)
I(P. — V1l — Py)l|<const €' =, (4.43)
IV =P, = Po)Pyli<const, (4.44)
”?’E 1P, ||<const €, (4.45)

where 7 is the identity on L (R)and || . || is the operator norm
induced by the L 2 norm.

Proof: The proof of (4.40) follows from the fact that on
R\(IuI'§) we have ¥, = V,.. The proof of (4.41) follows
from the fact that
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/I>2¢>’I>1€ , on I'tury
and
0<V 5 (Ve — Vi) =1 = (P /Pro)<1. (4.47)

The proof of (4.42) follows from the fact that on I'9ul' we
have

VielV) = Vae( s€)) = Vo tan’ BT (€) + 2% + 2. (4.48)
Therefore, since 8 and ¥, are given by (3.3) and (3.4) we have

(4.46)

/I>,€( y)»conste” », (4.49)

for0<e<e,.
Let us prove (4.43). Let us consider the function

F(n=P.0-P0. (4.50)
Using the Taylor’s formula at y = 0 we have
F.(y)= — 3>+ (Fr(EV3)y*, (4.51)

with £ an intermediate point in the interval (0, y). When
| | <7y(€) = €' we have

|P2(5)] = 120€%* — 96a%€y| <24€* %5~ + 4a?)

(4.52)
and
|7 72(3)| = 32a*8 |cos = By||sin By|(2 + sin? By)
<e24f6a’n/ cosS(_”_ 3 _5,) _ (4.53)
a6

Therefore, when | y| < %,(€) = €™ from (4.51), {4.52), and
{4.53) we have

|F.(y)|<const € (4.54)

When | y — (av2/€)| < 7j,(€) we have /I>,e( Y= f’ze( »), so us-
ing the Taylor formula at y = av2/€ we have

F.(y)= — 6aV2e(y — (av2/€) — 3€(y — (av2/e)f’
+ (F2E)V/3Ny — (@276, (4.55)

with £ an intermediate point in the interval (@v2/¢, y). For
| y — (@V2/€)| < 7,l€) we have

|V 7(y)| <144V3a’e + 6240°€%7,

1-38,

+ 360v2ae’n; + 120€'%; (4.56)
and
T " L 4 - 5
Vi pl< 5 96a™/|y (@V6/3¢€)|%)
<96a*(2v /|1 — in2v][%). (4.57)

Since Eq. (3.7) implies that hﬁn,g 1,(€)/7,(€) = const 0 from
(4.55), (4.56), and (4.39) we have

1-35,

|F.(y)|<conste ~ ™, (4.58)
when | y — (aV2/€)| < 7j,(€). Reasoning in the same way it
can be shown that
1-135,

|F,(y)|<const e (4.59)

when | y + (a@v2/€)| < %,(€). This establishes estimate (4.43).
Let us prove (4.44). From Proposition 2.1 (i) we know
that ¥, given by (4.27) has three minimizers y =0,
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y = + (1/€)((a® + y4a® + 9€%)/3)"/? and two maximizers at
y= =+ (l/e)((4a® — Ja4a* + 9€7)/3)"/%. Moreover

A 2 _ 172
lime’Ve(i—l—(“a Vaa + 9e ) )=12—a6, (4.60)
0 € 3 27

~ 2 172
lim Ve(il(““ + V4a® + 9 ) )= 4?42,
0 € 3
(4.61)

and for 0 <e<e¢,
i(4a2_ [4a® + 9 )1/261(16)’
€ 3
_i(4a2—\/4a3+9? )V’d(e,
€ 3 2

(4.62)

and

L( 40* + 42"+ 9€ )‘”e, @,
€ 3

L (4 )
3 2

(4.63)

€
Let yel ‘80l . Then ,.(y) = V.| 7ji(€)) + & so that
~ A ~ ’I>E Vool 71(€)) + ¢
VUV, - V)| = ‘1—4— <1 +’—("—‘L, (4.64)
V. mie)

where

m(e) = min /I>€(y)=min ’I>e(y)
Purg e

=min{V (7€), V.(av2/e) - F,le))} .  (4.65)
Equation (4.65) follows from the fact that ¥V, is even, and

from (4.62) and (4.63).
An elementary computation now shows that

|/l>; ‘(/l>; —'I>le)|<const, for O<e<e,,
when yel @ur'e . (4.66)
Let y>(av2/€) + 7,(€). We have ¥V, (y) = V,.(y). Define

y' =y — (@/6/3€). We therefore have y'>7,(€) + (1/y2v)
and
Vie(y) = 4a*(y' — (172w} — 4a?

o
(4.67)

since, when y' >7,(€) + (1/v2v) we have (1 + (1/y'V2v))*<4.
It follows

Vie(y)<16a’(y — (@V2/€))? — 4a?
when y>(av2/€) + 7€) .

Moreover

V.(y) = —4a2—6v2ae( —i’:l)

2
el
V2v v

(4.68)

+ (16a* — 362)(y — a_:I_)z

+ 24V2a3e( y— ﬂ)B + 26(1262( y— 1‘/2—)4
€ €

5 6
+ 6v2ae3( y— —‘”7) + e“( y— _-‘"2) . (4.69)
€ €
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From (4.68) and (4.69) when 0 < € < €, and y>(av2/€) + 7,l€)
we have

Vlf <(16a4 + —24 )
Ve 7€)
2
x(l _ ta’ _ 6V2me —= +16a* — 362’)
7€) 72€)
(4.70)
so that [V,./V,|<const when 0 < € < &;. That is,
P/‘}c— 1(96 - ’;}ls)i<con8t ’
when O<e<€y, y>lavi/e)+ n.le). 4.71)
Reasoning in the same way it can be shown that
|’I}; ‘(/I\’e — /I>,E)| <const,
when O<e<e,, y< —lavl/e)—le). (4.72)

The equations {4.66}, {4.71)}, and {4.72) establish (4.44}.
Let us prove (4.45). When yel (Ul § we have

Viel9) = Vael Arfel) + ¢ (4.73)
and
ﬁef; B H€)V2e( 71(€)) = const#0. (4.74)
From (4.39) it follows that
Ii}; !|<const €
when O<e<e,, yellfuI. (4.75)
Moreover
Vie(3) = Vae )3 Vaell@v2/€) + Tole))
when O<e<€,, y>(av2/e)+ T,le) (4.76)
and
1312 T2 2€)V,e((@v2/€) + T,(€)) = const£0 . (4.77)

Since 7,(€), 77,l€) are of the same order as e—0 from {4.76)
and (4.77) it follows

|f’; ' <const €',

when O<e<ey, y>(av2/e)+ f,le). (4.78)
Reasoning in the same way it can be shown that
1?”{; !| <const €',
when O<e<e,, y< —(avi/e)—T,le). (479)

The equations (4.75), (4.78), and (4.79) establish {4.45).

This completes the proof of Theorem 4.6.

Theorem 4.7: There exist constants z,> 0, €,>0 such
that when 2>z, and 0 < € < €; we have

(N. +2?>U?%, on CLRXESR), (4.80)
(ND 4+ 2P>BU3,, on €FRIXES(R), (4.81)
wn® +z)2>BU2€ , on TR — {2y — 1} — { 72})
CER— {2 —m) — [ m)),
(4.82)

where 0<B < 1.
. Proof: Let us first prove (4.80). Proceeding as in the
proof of (4.1) we can show that

(Ne +2 —

U252U, +2-U"”. (4.83)
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Therefore, to prove (4.80) it will be enough to show that
for z > z,, 0 < € < €, we have

Fy(y)=2U . +22-U7>0, yeR.
A simple computation shows that
Fy(y) = 2d%¢*zy® + (6ab /vV2)E'zy® + {22(3b % + 2ac)e®
— 30a%¢*}y* + {{6/V2)bcez — (60ab /V2)E*} y°
+ {22(c* — 3a€?) — 12(3b % + 2ac)é?} y*
— [(6b /V2)ez + (18bc/V3)e} y — 2z¢ — 2¢?
+ 6ae” + 22 ’
Let ¢ = ep. Rearranging the terms in {4.85) we have

= af[ L Lo+ 2 2]
) al[ A+ 2 v

3b z
—{3ar®* +—1 c)+—]
(a RV R R

60ab
Vi

(4.84)

(4.85)

1[ 204 (9 2 )2
——|30a%* + —— 3+ 12(= b2+ 2ac)t
2z T

1

v; bet + 2¢% — ﬁaé” (4.86)

For z >z, and 0 < € < €, the expression {4.86} will be positive
for any teR. This proves (4.80).

The proof of (4.81) and (4.82) can be obtained from the
proof of (4.2) and (4.3) with only minor changes and will be
omitted.

Let ¢, be a constant such that

6 U +¢,, and (U, +2,/>U2, 4.87)
le = Ule +C* ’ and (Ule + C )2>U1e ’ (488)
U =U,+¢,, and (U +¢, PU2, . (4.89)

We define

A d2 ~

No= -2 40.=N, +2,, (4.90)

dy*

A d2 A

Nle=“_2+Uls=Nle+c (491)

dy

A d2 A "

o= -t Uu=Mu vty (4.92)

Theorem 4.8: There exist z, > 0 and €, > 0 such that for
z>z,and 0 <€ <€, we have

(N. +27>0%, on €SRIXZS(R), (4.93)
(N‘”+z)2>BU,€, on ZR)XESR), (4.94)
NP+ 27 >ﬁU25 » on CeR— {2y, — 1) —{12})
XEFR— {29, — 2} — { 7)),
(4.95)

where 0 < B < 1.
Proof: 1t follows from Theorem 4.7 since U e=UZ1 U b
>UZ, and ¢, >0 and from the similar statements for U tes
Ule’ UZG’ U2e
Theorem 4.9: There exist z, > 0 and ¢, > 0 such that for
232, and 0 < € < €, we have

IV + 27 9I<|T 79l VyeL¥R), (4.96)
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1

Ble

V22 < 02 VWL R, (435

IO + 2 l<—— T2 '9ll, YoeL*R), (4.97)

where 0<B < 1.

Proof: It follows immediately from Theorem 2.21, p.
330 of Kato."”

Definition 4.10: Let P¥ be the projection on the sub-
space of the functions of L %(R) that have support onJ {fuJ .

Definition 4.11: Let P¥ be the projection on the sub-
space of the functions of L *(R) that have support on R\ U'¢,
where

U9 = { y|| p| <ple}u{ »l| ¥y — 31| <pale)}
Oyl y — »al <pale)}
Let us now choose
ule)=€%, 0<8,<§. (4.99)

Then u,(€) and u,(€) will remain determined by Eqgs. (3.28)
and (3.29).

Theorem 4.12: Let u,(€) be given by {4.99) and u.(€),
H3€) be determined by (3.28) and (3.29}. Then for 0 <€ <,
we have the following estimates:

1@ ~ Dl ~ P =0, (4.100)
|U 32 U, — U, )P¥||<const, (4.101)
| T 2 'P¥||<const €, (4.102)
T, — U, I — P2)||<const €'~ (4.103)
1T - YU, — U,.)P2||<const (4.104)
I T = ‘P 2|l <const € . (4.105)

Proof: The estimates (4.100), (4.101),...,(4.105) can be
proved as the corresponding estimates (4.40), (4.41),...,(4.45)
of Theorem 4.6.

V. THE BEHAVIOR AS ¢—0 OF EIGENVALUES AND
EIGENVECTORS OF M_, N,

Let us first make precise in which sense I,l\/{e is approxi-
mated by MY, M?® and N, is approximated by N, N'?.

Theorem 5.1: There exist constants 4, z,>0, €,>0,
&F >0 such that for z > z,, 0 <€ < €, we have

WD + 27" — (1, +2)7"||<4e”, (5.1)

LD 427" — (MO 4 2)7 <4, (5.2)
12D 427" — (M, + 2| <4e” (5.3)
INO 27t — (N, +2)7"]| <4, (5.4)
IN® +2)7" — (N0 + &7 <de”, (5.5)
IV 427" = A, +2)7 " <4e . (5.6)

Proof: The proof of (5.1), {5.2), and (5.3) follows from
Theorems 4.3 and 4.6, reasoning as in Isaacson,” Theorem
3.1. Similarly, the proof of (5.4}, (5.5), and (5.6) follows from
Theorems 4.9 and 4.12.

Let us remark that {5.1) and (5.4) say that the resolvent
of M, converges to the resolvent of M % and the resolvent of
N. converges to the resolvent of N as e—0. In Sec. III we
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have studied the eigenvalues and eigenfunctions of M % and
N2 here we will see the consequences of (5.1) and (5.4) on
the eigenvalues of M., N..

Let P.(S) and P?(S) be the spectral projectors of M,
and M ¥ associated with the Borel set SCC.

The eigenvalues of M@, (3.17) and (3.20), when e—0,
are given by

AL=8n+ ), n=01.2,., (5.7)
A =4a’(n+ 1)+ 2(€), n=0,1,2,. (5.8)

{see Fig. 9). We remark here that 4 £ has multiplicity 2 and
A9, has multiplicity 1. Let

Culr)={z]|z—4da®%k | =r), k=012.., (59
and
Dy, = (z]jz—da?k |<r}, k=0,12,., (5.10)
with r<a?, and let
PAD) = —MO)a. (5.11)
2mi Jeyn
Then

PADy=P3{Ai&}), for € small enough, (5.12)
PPfAY_ .}, kodd,
P‘ez)(Dk)={ z({ : 1, } .
P‘e){{’t k—1,e }U{’{‘ ki/Z,e}) * k even,
for e<€, (see Fig. 9). We remark that €, cannot be chosen
independent of k.
Theorem 5.2: There exists €, >0 such that for all
zeCy(r)and all 0 < € < €,
(—M)"!
exists, and

sup [z —M.)~" —(z — M Z)"||<const €17 (5.15)
2eCyir)

Proof: 1t follows from Theorem 5.1 and the known
properties of the spectrum of M %), rearranging the proof of
Theorem 4.1 of Isaacson.”

Theorem 5.3: For k = 0,1,2,..., we have

lim||P(Dy) — POD,)|| =0.
0

(5.13)

(5.14)

Moreover for all € sufficiently small M, possesses the follow-
ing.
(i) Two distinct eigenvalues po(€)==0, uf (€) > O such that

lim pg (€} = pyle)=0. {5.16)
€—~0

% M ] 4
Age Doe Me A,

4a? 8a? 12a? 1602

FIG. 9. The spectrum of M 7.

Angeletti, Castagnari, and Zirilli 688



(ii) When k is odd, one eigenvalue u, (€) such that
limu, (€) = 4a*k, k=13,... (5.17)
0

(iii) When k is even, three distinct eigenvalues y, (€),
15(€), uil€) such that

lim g, (€) = lim pi(e) = lim pi(e)
€0 e—0 0

=da*k, k=24,... {5.18)
Proof: From {5.15) of Theorem 5.2 we have
1P.(Dy) — P2(D)|
=||s54 te-s - M e
27i Jeyn
<const re’”? {5.19)
Therefore, for € sufficiently small
dim P.(D,) = dim PP(D,). {5.20)

The remaining part of Theorem 5.3 follows from (5.12),
{5.13), (5.7), and {5.8}.
Let us now establish the results announced in Sec. II.
Theorem 5.4: Let 0= — Ayle) < — A4le) < — As€) <.
be the eigenvalues of M. Then

lim — A,(e) =0, (5.21)
€0

lim — A, , . (€) =4a*2n+1), n=012,., (522)
€0

lim — A4, 4,(€) =lim — A, 4,(€) =lim — A5 ,,(€)
0 0 0

=8a’(n+1), n=012,.. (523
Proof: Let

S, = {z=x+iy| — I<x<4a’k + 2%, — 1<y< — 1},
k=0,1,...

By estimates analogous to the ones of Theorem 5.2 it is possi-

ble to show that

lim||P,(S,) ~ P2(S,)|| =0.
0

That is, for € sufficiently small
dim P.(S,) = dim P(S, ).
Theorem 5.4 follows now from Theorem 5.3.

A straightforward computation shows that the eigen-
values of N'%, when €—0, are given by

— AW =c2n+1)—c+ O, n=012,.., (524)

—A® =le,l2n+ ) — e, + O, n=0,12,., (525)

—A¥ =2+ 1) —c, 4+ O1€), n=0,12,., (526

where ¢ =2ax,x,, ¢, =2ax,x; —Xx,) <0, ¢,=2ax,(x,
— x,) and x,,x, are given in (i} of Proposition 2.2.

Let { —4,}=_, be the set obtained reordering the
numbers of E, = {c2n+1)—c}Z. o, E; = {le;|2n + 1)
— )76, Es={c)2n + 1) — ¢;} 7. o in such a way that
—2,< =4, ,1,n=0,1,... Moreover if a number appears
inmorethanone E,, i = 1,2,3 it will appear a corresponding
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number of times in { —A4,]7_,. In particular, since zero
appears in E, and E; we will have — Ao=—4, =0.
Theorem 5.5: Let 0= — A, le) < —A,{€)<... be the

eigenvalues of N,. Then

lim—A,66= —4,.

-0

Proof: The proof can be obtained from (5.24), (5.25), and
(5.26) rearranging the proofs of Theorems 3.2, 5.3, and 5.4.

We remark that when a certain value appears more than
once in { — A, }_, this corresponds to asymptotic eigen-
value degeneracy for V..

Since — A, = — A, =0, we have

(5.27)

lim — 4,(€) = — A (6)=0.
€0

All the remaining { — 4, }_, are distinct if x,/x, is irra-
tional; if x,/x, is rational { — 4, }2_, contains values that
appear only once and values that appear three times.

That is, there are eigenvalues of N, that remain isolated
when e—0 and eigenvalues that have asymptotic multiplic-
ity 3 when e 0. We have already observed this phenomenon
in the study of M.

V1. THE ESTIMATE OF THE FIRST NONZERO
EIGENVALUE OF M. AND A,

In Sec. V it has been shown that

—Aole) = — Aol€)=0, Ve#0, (6.1)
ng} —Ae)= lie_rg — 2,6 =0, (6.2)

where — Ag(€), — A,(€)>0 are the first two eigenvalues of
M, and ~ Aq(€), — A,{€)> 0 are the first two eigenvalues of
N,.

In Sec. II it has been shown that the eigenfunctions
corresponding to — Agfe) and — A(€) are, respectively,

vel y) =d %~/ (6.3)
and
To(y)=d e, (6.4)
where f}, /> are given by (2.13) and (2.14), £, /5. by (2.4},
+ o —1
dez(f e_f“/zd) ==ice, 6.5
. ) T (63
_ + oo 7‘!2 —~1 €
s ([ ) s s
. V] TV (6.6
are normalization constants such that ||vg|| 25 = [[Voll . 2g,

=1, and c,, €. are given by (2.11).

Using the Rayleigh-Ritz principle {see Ref. 6, p. 78,
Theorem XIIL2) we want to estimate the quantities
— A€} + Agle) and — A ,(€) + A l€) as €0, that is, the first
nonzero eigéenvalue of M, and ¥,.

The same problem for the Fokker—Planck operators
corresponding to M, and N, and for some more general
Fokker-Planck operators has been considered by Mat-

kowsky-Schuss in Ref. 10.

Matkowsky-Schuss'® used the technique of matching
asymptotic expansions. The results obtained here using the
Rayleigh~Ritz principle are contained in the ones obtained
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by Matkowsky-Schuss, '° but are derived in a more elemen-
tary way.

Theorem 6.1: Let — Agle),
Then as €—0 we have

0< — A,(€) + Aole)= — A (€)<const e =" (6.7)

Proof: From the Rayleigh—Ritz principle (see Ref. 6, p.
78, Theorem XIII.2) we have

— A,(€), M, be as above.

(.M. g) LYR)
(8:8)2m

where geL }(R) is any function orthogonal to v, [given by
(6.3)] that belongs to the domain of M, as a form.
Since v, is an even function let us choose

0< —A(€) + Agle)= — A,(€)< ,  (68)

g=uv,, {6.9)

where u(y)= —u(—p) is an odd function such that
ueL *(R) and du/dyeL *(R), where du/dy is the distribu-
tional derivative of u.

The function g is orthogonal to v, and belongs to the
form domain of M.

We have

+ o d2
(g’M‘g)Lz(R) = f— . uvo( —_ F + Ve)uvo dy
+ oo d 2 -
=f [[5 (uvo)] + V.u“vg ]dy
+ oo 2 2
-J.. [(—‘-’-’i) 4 +4(%)
- dy dy

+ o 2
=J (ﬂ) v dy, (6.10)
—w \dy
since
te dvo) J‘+ * ( dvo)
- — d
J-_ w ( dy 4
+ o0
= — f [Zu — vy —2 LY
dy
d
+ 4P, dy”;} dy, (6.11)

and M_v, = — d*vy/dy* + V v, = 0. Therefore

St = (du/dy)v} dy

0< —A,(e) + Ale)= — A,(€)<
1 (1) 1 _fi : uzvg dy
(6.12)
Let us choose
1, y>1,
u(y)=1y, lyl<1,
-1, y<-—1.
Equation (6.12) becomes
SLyvgdy
0< —Ay(€) + Aole) = _AI(GKI?:—uzv(Z,—dy' (6.13)

Moreover
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1 +1 1
f v dy=dsf e /14 dy=——€—cef e~/ gy
-1 -1 \Q —1

€ Ad1)
c.2e”
Vi
— _f_ 2e + 2a2e — sz/ze — 2/ . (6. 14)
It can be easily shown that
lim ec, =2/ a (6.15)
=0
and that, since x = (e/V2)y,
+
lim J. viu? dy
0 J_
+ o
= lim ce” 'Z/é)f‘(")uz(—v—z x)dx =1. (6.16)
e—0 J_ o €
In fact, in the sense of distribution
lim c.e ~ %% = y(5(x — a) + 8(x + ) , (6.17)

€0
where 8 ( - ) is the Dirac’s delta. Theorem 6.1 now follows
from (6.13), (6.14), (6.15), and (6.16).

We remark that since a* =f,(0) — fi(@) the estimate
(6.13) agrees with the one of Matkowsky—Schuss. '°

Theorem 6.2: Let — Ay(€), — A,(¢), N. be as above.
Then as e—0 we have

Zl(f) + Zo(‘f)ﬂl(e)
(2/€)( folx)) —folx2)) (6.18)

where x, and x, are given in Proposition 2.2 (i) (see Fig. 2).
Proof: Reasoning as in the proof of Theorem 6.1 we
have

O0< —

<const exp( —

§* 2 (dh /dy)v; dy
$*e k5 dy
(6.19)

where g = hv,cL %(R)is a function orthogonal to ¥, such that
heL =(R) and dh /dyeL *(R).
Let us choose

0< —A4(€) + Aole)= — Ai(e)<

h =u — (VD) Lm) (6.20)
where
1, y>»+1,
uy)={y—y, |y—nl<t, (6.21)
- 1 E] y<y1 - 1 )
where y, = (V2/€)x,.
Reasoning as in Theorem 6.1 it can be shown that
f (dh ) v dy<const e — @) (6.22)
—w \dy
Moreover
+ + o0 + 2
f h dy = J s dy — U 77 dy) , (6.23)
+ oo
limf wvsdy=1, (6.24)
0 J_
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5(0)
f3lxs)
Theorem 6.2 now follows from (6.19), (6.22), (6.23), (6.24),
and (6.25).

i S 2o WAy +1

(6.25)
0 o= 2/€ fixa)

VIl. CONCLUSIONS

Let f(x)% *(R) be such that e ~ <)/l YR), Ve#£0
and suppose that

f'x)=0 (7.1)
has n roots £,,£,,...,&, such that

fré)=a,#0, i=12,..n. (7.2)
That is, £,,£5,....£, are nondegenerate minimizers or maxi-
mizers of /.

Let

e ad*. a (df )
L()==— —_—=-1, 7.3
) 23x2+c9x dx 7-3)

the Fokker-Planck operator associated to f.

Proceeding as in Sec. II, the study of the spectrum of

{7.3) can be reduced to the study of the spectrum of
d 2

H, 07 + W.(y)
on L *(R), where W_( y) is given by (2.7).

Let y, = (V2/€);, i = 1,2,...,k. A straightforward com-
putation shows that as e—0, W_( y) approaches n decoupled
harmonic oscillator potentials la?(y — y;)* ~ la;.

Therefore, we expect the spectrum of H, to approxi-
mate the spectrum of » decoupled harmonic oscillators A |,

={la;|2k+ 1)+ 1, i=1,2,.,nand k =0,1,2,....

In particular, if f has m ( < n) minimizers, thatis, @, >0,

(7.4)
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j=12,..,m we expect the eigenvalue zero of H, (or L) to
have asymptotically multiplicity » when é—0.
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An N-spin model is given with a discrete-time evolution specified by a system of stochastic
difference equations. A Markov chain associated with the evolution is decomposed into two,
nonhomogeneous, absorbing Markov chains. Analysis of each chain yields the probability, given
a specific initial state, of ultimate absorption into a specific state. As time — < the spin model
will, with probability equal to 1, have all spins up, all spins down, or will oscillate between two
antiferromagnetic (Néel) states. The time-dependent correlation functions (s;(¢)s;(¢ )} are also

obtained.

I. INTRODUCTION

Stochastic spin models are often closely related to a
model which Glauber introduced. Such models are typically
written in terms of a master equation’ describing the (contin-
uous) time evolution of the probability of a state of an N-spin
system. The master equation contains specified transition
rates for spin flips—usually single or double spin flips.” The
transition rates are functions of a few spins which constitute
the local environment of a given spin.

Similar models have been studied in a discrete-time®
framework as finite Markov chains. In that context the
Glauber model may be viewed as a generalization of the Eh-
renfest urn model.*

Work on models of the above types and on models con-
taining many-spin transitions extends into areas outside of
conventional physics. There are voter models, cell-growth
models, neural-net models, etc., some of which appear to
have originated in Russian journals on cybernetics and infor-
mation theory. A subset of these models is reviewed in a very
approachable monograph by Kindermann and Snell® and in
a review article by Durrett.® A recent review article by Wol-
fram’ contains extensive computer simulation results direct-
ed towards a classification of the behavior of cellular auto-
mata.

The purpose of the present paper is to describe the be-
havior of a model involving a row of N Ising spins ( 4+ 1
variables). The evolution of the spin system is given by a
discrete-time, nonlinear system of stochastic difference
equations. At each time step many spins may flip.

The behavior of the spin system is expressed in terms of
a finite Markov chain.® The Markov chain is decomposed
into two Markov chains operating in disjoint space-time sub-
lattices. Each of the latter two Markov chains is an absorbing
Markov chain with two ferromagnetic absorbing states. Giv-
en any state of the spins on the independent sublattices, we
find the probabilities of ultimate absorption into the absorb-
ing states. In other words, given the initial state of the ¥
spins, we have the probabilities of the spin system ultimately
achieving a ferromagnetic state of all spins down, of ulti-
mately achieving a ferromagnetic state of all spins up, or of
oscillating forever between two antiferromagnetic (Néel)
states; no other behavior is possible.

Additionally, we have the two-spin, time-dependent
correlation functions (s,(t)s;(z)).
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Aspects of these exact, analytic results have been tested
by computer simulations. For N = 20, large variations in the
absorption time are observed.

1. SYSTEM OF STOCHASTIC DIFFERENCE EQUATIONS

Consider a one-dimensional lattice of sites labeled by
the integers 1,2,...,N so that site j has left neighborj — 1 and
right neighbor j + 1, forj = 2,3,...,N — 1. Site 1 has site 2 as
its only neighbor and site ¥ has site N — 1 as its only neigh-
bor. N is taken to be an even integer not less than 4.

Associate with each site a time-dependent spin variable
5;(t) restricted to the values -+ 1. The time parameter ¢ is
discrete:

sit)= +1, for t=0,1,... (2.1)

The evolution of the spin variables is given by the fol-
lowing stochastic process: at time ¢, spin s;(¢) (j>2) “looks”
at its two neighbor spins s;_,(¢) and s; , ,(¢). If the two
neighbor spinss; _, (¢) and s; , , (¢) are parallel, then s;(¢ + 1)
assumes the value of s, _, (¢) [or equivalently, s; , , (¢)]. If the
two neighbor spins are antiparallel, then s;(¢ ) “tosses” a coin
and s,{t + 1) assumes the value + 1 if the coin displays
“heads” and — 1 if the coin displays “tails.” Each end spin
at time ¢ + 1 assumes the value its neighbor had at time ¢.
This process may be expressed in terms of the following non-
linear system of stochastic difference equations:

st + 1) =s,(¢t)
st + 1) =4[s,_1(t) +5..0)]
+3[1 =51 (t)s5,4(2)]6;(2),
splt + 1) =sy_:(t),
wherej =2,3,.., N—land ¢t =0,1,....
The random variables 6,(¢) for j=2,3,..,.N—1 and

t =0,1,..., m* are statistically independent and identically
distributed according to the prescription

(2:2)

6,(t)= +1, with probability { + €,
(2.3)
6;(¢)= — 1, with probability } —¢,

where |€| <} and m* is any positive integer. The coin is not
necessarily “fair”’; consequently, € is not necessarily zero.

Next consider a Markov chain associated with the
above system of stochastic difference equations.
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HI. ASSOCIATED MARKOV CHAIN
To lighten the notation, write

s;=s(t+ 1),

(3.1)
5 = sj(t )s
and use the relation
6 (s,s") =41 + 55"}, (3.2)

for the Kronecker delta 8 {s,s") involving any spin variables
5,5" restricted to the values + 1. Then the stochastic process
described in the preceding section can be associated with a
probability p(s},...,Sx |1---,8x) Of the spin system realizing
the state (s} ,...,s%) at time ¢ + 1, given that the system was in
state (sy,...,Sy) at time ¢:

DS} seeesSiy [S1s-esSw)
1 N-1Tq
=2+ T [50+5- 150
2 j=212
XYL + 55,1105, 55)
31+ 55185, 81 —558,.1)80s], — 5))
+i4(1 _sj—lsj+l)[(%+€)6(s;71)

+ (1 — €)dlsj, - 1)]”%(1 +SnSw—1): (3.3)

This one-step transition matrix defines a Markov chain
associated with the system of stochastic difference equations
(2.2).

IV. DECOMPOSITION OF THE MARKOV CHAIN

When one looks at a two-dimensional lattice (one space
dimension and one time dimension) shown in Fig. 1, one sees
that the system (2.2) decomposes into two systems. The two-
dimensional space-time lattice decomposes into two disjoint
sublattices. This decomposition enables one to factor the
Markov chain transition probability (3.3). The latter factori-
zation significantly simplifies the problem and is accom-
plished in the following way.

Agree to let 5; relate to time 2¢, 5 to time 2¢ + 1, and s}’
to time 2t+ 2. Then introduce new variables (for
j=12,..,.N/2)

2t+2
2t + 1|

21

FIG. 1.The sublattice decomposition for a system of N = 4 spins evolving
according to the stochastic difference equations (2.2).
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Uy =Sy, Uj=5y 1,
. 4.1
v =Sy U =5y @l
vy =58y U =Sy_1
4.2)

U =s3_1, U =sy.

From Fig. 1 one sees that the # variables refer to the
sublattice with the dashed-line bonds and the v variables re-
fer to the sublattice with solid-line bonds.

The transition probability for the time step 2¢ to 27 + 1
is

PSS oS [S1r8)

=Pl seesli 2 | U sty 12)

X P15V 12 V15005V 2 )5 (4.3)
and for the time step 2¢ + 1 to 2¢ + 2
A )
=p2(u;"-"’u1’\'l/2 |ui ’"-9u;\’/2)
XP1(U7 yeeesV /2 V] 5o esViy 12)s (4.4)
where
PilX] seee X 2 | XseensX iy 1)
1 N/2 1 1 1
=—(14+x{x [—[ + —(x;_ x;)x;
2( 11)jl=-[22 2(,1+,)x1
1 ,
+ 7(1 —xj_lxj)xjé'”, 4.5)
and
P2AX1 seesX iy 2 [X 130Xy 1)
N/2 -1 1 1 ,
-1 ju TR
1
+ 7(1 —xjxj+,)x;6”
X1+ xy x5 2 ) (4.6)

in terms of arbitrary spin variables x;, x/ = +1 for
Jj=12,..,.N/2.

Let P denote the 2¥X2" matrix with elements
D87 ,...s8 |S15,8y). Here, P is a stochastic matrix since each
of its elements is in the interval [0,1], and the elements in
each column sum to 1.

Similary, let P, denote the 2V/2 X 282 stochastic matrix
with elements p,(u{,....u} », |4 1s--sttn 1 ); let P, denote the
2V/2%2N72  stochastic  matrix  with  elements
D2y sty 12 |87 5o sty 12 ). To help distinguish the two sub-
lattices, let Q, denote the stochastic matrix with elements
PV o0 12 |0} 5oV 2 ) and let Q, denote the stochastic ma-
trix with elements p,(v],...0y 3 [U1se--Uy 2 )-

With the above definitions one has the direct-product
factorization

P=P,®Q, for the step 2r—2¢ + 1,
4.7
P=P,®Q, for the step 2r + 12t + 2, @7
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and for r =0,1,2,...,
p¥=(P,P) e (00,

pPHi=[P(PP)]e[0,0,0,)].

This factorization, which provides a decomposition
into two nonhomogeneous Markov chains, clearly intro-
duces no statistical connection between the two sublattices.
Consequently, if spins on one sublattice are initially statisti-
cally independent with respect to spins on the other, then the
statistical independence will persist for all times
t=0,1,2,.... In the following, we restrict the choices of ini-
tial probability so as to gain that statistical independence.
One is then able to obtain results for the N-spin system by
studying the &V /2 spins on one sublattice.

(4.8)

V. SYMMETRY PROPERTIES OF THE TRANSITION
MATRICES

For definiteness, focus attention on the N /2 spins
Uy,...,4y ,, located on the sublattice with dashed bonds [see
Fig. 1 and Eqgs. (4.1) and (4.2)]). The transition matrices
relating to those spins are P, and P,, with respective
matrix elements Dl seeestly p3 |Ugseeestlng 1) and
DPAUT sty 12 | U] 5o sty o ) defined by Egs. (4.5) and (4.6).

Let u denote the N /2-tuple (u,,...,u4y ,,) and denote the
matrix elements of P, and P, by

p‘,f’(u'|u) = Pic(u] sl g2 |ul’--"uN/2 ), (5.1)
where k = 1,2. Note that €, which now appears explicitly on
the left side, was part}y suppressed in the defining equations
(4.5) and (4.6).

Here are some important, easily established properties
of the transition matrices. Matrix elements will be written as
in (5.1) and also in the Dirac notation form as in (5.3) below.

Property I:

PR u) = pl 9 —w'| —u). {5.2)
In terms of the matrix elements, such as

(W'|( PPy u) = Spu’ [u"}piu” u), (5.3)
etc., the latter property leads to
Property II:

(W|(PP) [w)¥ = ( —u’|( P,P) | —u)' 9, (5.4)
and
Property I1I:

(W[ Py PyPy) [w)) = { — [Py P,P))| —u)' =9, (5.5)

fort=0,1,2,... .
To gain a measure of the importance of the above prop-
erties, consider the time-dependent expectation

(;(2 e = ] W[ [( PPy 1) S(wu®), (5.6)

subject to the initial sublattice spin configuration u’. Then
<uj(2t ))u";e = <uj(2t )> —-u% -

for j=1,.,N/2; t=0,1,.., (5.7)
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and the result also obtains for 2¢ replaced by 2¢ + 1. So one
has

(Wt Dwe = — (4t w, e
for j=1,.,N/2; t=0,1,... (5.8)
Also,
(8t (o = 048 Y (2)) o, (5.9)
Two additional properties of the transition matrices are

expressed in terms of the permutation matrix R with matrix
elements

(¢'|R |u)
=1+ uy )}l +uy oY1 + ujuy )
(5.10)
Notice that
(u'|R [u) = (u|R |u'), (5.17)
(WIR [u) = ( —u'|R | — ), (5.12)
R*’=1 (5.13)

Since R is real, symmetric, and satisfies the last equation, the
eigenvalues of R are + 1.

From the definitions of P,, P,, and R one has Property
1v.

Property 1IV:
R-'PR=P, (5.14)

Thus, P, and P, have the same characteristic equation
and the same spectrum.
Additionally, since R = R ~', one has Property V.

- Property V:

(P,P) =(RP), for t=0,1,... (5.15)

VL. THE LIMIT (-

P,, P,, and R are all stochastic matrices, so any product
of those matrices is a stochastic matrix. Of particular interest
is the stochastic matrix P,P,, since the time dependence of
the Markov chain for the sublattice spins is essentially deter-
mined by ( P,P,)". For 0<|€| <}, the matrix P,P, is a transi-
tion matrix for a Markov chain with only two absorbing
states. One absorbing state has all (sublattice) spins u; = 1
(j=1,...,N /2). Thus, for #— oo the probability of all sublat-
tice spins down added to the probability of all sublattice
spins up yields 1. It follows that, irrespective of the initial
state of the one-dimensional N-spin system (see the last para-
graph of Sec. IV), the two-dimensional space-time lattice will
ultimately (with probability unity) have both sublattices par-
allel up (all spins + 1), both sublattices parallel down (all
spins — 1), or the sublattices mutually antiparallel. There-
fore, the N-spin system ultimately (with probability unity)
has all spins up, all spins down, or it oscillates between two
antiferromagnetic (Néel type) states.

To establish the above assertions, which were made for
0<|€| <4, let u™ denote the (N /2)-tuple (1,...,1), and let u™
denote ( — 1,..., — 1). Then from (4.5), (4.6), and (5.1)
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(u'|P,Py|u) = S pf(u’|u" ) (" u)

= §(u’,u*)dm,ut) + Su’,u")d(w,u”)
+ [1 —8(uu™)][1 — buu™)]

X Y ' up, " u). (6.1)
w gt
For 0< |€| <4 the matrix element
(W'|P,P,[u)® = S(u’ut)5mu*) + S, u”)duu”), (6.2
foru=u*oru=u".
For any u#u* oru~
Y (u'|P,P,|u) <1. (6.3)

w#ut

This establishes that P,P, is a transition matrix for an
absorbing Markov chain with u* and u™ as the only absorb-
ing states.

Now consider the initial sublattice spin configuration
W0 = (805U 20)- Given u’, what is the probability p , (u°)
of ultimate absorption into the state u*? [The associated
probability p_(u°) = 1 — p_ (u°), since the Markov chain has
u* and u™ as the only absorbing states.] The calculation of
the probabilities p_, (u°), p_(u°) generally involves the diffi-
cult task of obtaining a so-called fundamental matrix.® Here
we have a way around this difficulty when € = 0. Since we do
not have a rigorous proof of the validity of the method, the
word “conjecture” will serve as a hedge.

Given the initial sublattice state u’, the probability that
spin j has orientation u; at time ¢ is’

plu; %) =4[1+ u; () ], (6.4)
where (u;(t)) is the time-dependent average computed by
averaging (2.2) over all appropriately weighted sample paths
and using (4.1) to relate s; to the «,. In the above notation for
(u,(t)) the dependence on u° is implicit.

Since the two absorbing states have all spins up or all
spins down, we conjecture that

P+ =t—>0 limit of p(1|u’%¢),

(6.5)
p_(0) =t—>o0 limit of p( — 1ju’t),

where
p-@)+p_(@)=1 (6.6)

To compute the right side of (6.4) one uses (2.2). The
latter equation provides a means of expressing s;(t)
in terms of the statistically independent quantities 6,(0), ...,
On_100), 65(1), ..., Oy _ (1) ooy Ot — 1), ooy O (t—1);
consequently, (s,(2)6,(t)) = (s,(t))(6,(t)) and we have

(51t + 1)) = (st )),

(sj(t+ 1)) =i[<sj—1(t)) + (Sj+1(t))]

[l = (s (e, 1 (£)) ]€6,(2)), (6.7)
(sn(t+ 1)) =sy_ (1)),
wherej = 2,3,....N—1l,and t =0,1,... .
The system of equations (6.7) which can alternatively be
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obtained via the Markov chain transition matrix (3.3) is only
the beginning of a hierarchy containing single-spin averages
(s;(2)), two-spin averages (s;(¢ )s(t)), etc.

For the special case of € = 0, however,

(6,(t)) =0 (for €e=0), (6.8)
and (6.5) becomes a closed, linear system involving single-
spin averages:

(s(t+ 1)) =A (s(t)) (for €=0), (6.9)

where s(t ) is a column vector with transpose [5,(¢),...,5x(¢)],
and 4 is the N X N, nonsymmetric matrix

01 0 0]
i 0 4 0
0 4 0}
A= oo , (6.10)
} 0 40
0 1 0
LO 0 1 0]
with the spectral representation® (W is the transpose of the
vector wy)
N—1 v, S 2
4=3 e %%; (6.11)
where the eigenvalues
e, = cos(ay), (6.12)
a, =kn/(IN—1) (k=0,1,.,.N—1) (6.13)
and corresponding eigenvectors w, with components (w,);,
(W) = wye = wy cos[(j— Na, ]. (6.14)
S denotes a diagonal matrix
S =diag(1,27"2327Y2,..,,2712), (6.15)
with inverse
S ~! = diag(1,2'/3,2'/2,...,21/2,1). (6.16)
The solution of (6.7) is (for € = 0)
N—-1 w -2
(s(z)) = kgoe;‘ %% (s(0)). (6.17)

Notice that the scale factor w;, drops out of the solu-
tion, and for 7— oo the only surviving terms are the one with
k = 0 (projecting ferromagnetic alignment) and the one with
k = N — 1 (projecting antiferromagnetic alignment). Look-
ing at the limit on even time values, one has (for € = 0)

N " -2
t— oo limit of (sj(2t ) = Z {(MQS_) S?
WoS “PwWo/y
L P
Wy 1S Twy i ‘

By using (6.18), (6.4), (6.5), and (4.1) (to relate the s; to
the u,) one now has

P =i[1+ (uj(w))],

i=1

(6.19)
P_(0°) =1 = (u;(e))),
where (for € = 0)
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(4)(c0)) =t—>co limit of (u,(2t))

N2-—-1

Y

n=1

= e L2
B Ry
where 4 = (1,(0)).

Equations (6.19) and (6.20) enable one to express the
probability p, (u°) of ultimate absorption into the state u™
for the sublattice starting in the state u®. The probability of
ultimate absorption into the state u ™ for the sublattice start-
ing in the state u’is p_(u®) = 1 — p_ (u?).

For the other sublattice, with spins labeled with v;
(j=1,...,N /2) according to (4.1), the probability of ultimate
absorption into the state v* (all sublattice spins up) starting
from state v° is p_ (Rv°), where R is the permutation matrix
defined in (5.10). Similarly, the probability of ultimate ab-
sorption into the state v~ (all sublattice spins down) starting
from state v° is p_(Rv%) = 1 — p_ (Rv°). Thus, (6.19) and
(6.20) can be utilized for the v sublattice if u° is replaced by
RY°.

Since the two sublattices are independent, one can im-
mediately write the probabilities for the four possible limit-
ing spin configurations on the two-dimensional (space-time)
lattice; viz.,

Dy (uo)p+ (Rvo)r D+ (uo)p—(Rvo)»
p_(0°p (RV%), p_(u)p_(Rv°).

Vii. CORRELATION FUNCTIONS (¢ = 0)

Theterm}[1 —s;_,(t)s;, ,(¢)]6;(¢)in(2.2) contributes
the term

(6.20)

)

[ 0 0 0
—0,(t) 0 0i(t)
0 — 05t 0 0t
By i) ¢ i)
— Oy _a(t) O
| 0 0
where
6,(t)= + 1, with probabilities . (1.7)

In the preceding section we used the fact that
(B(t)s(t)) = (B(t))(s(t)) = Otofind (s(¢)) by solving (6.9).
Now we want to calculate correlations {s,(¢ )5;(t)) so we
consider the formal solution of (7.5):
st +1)=[4+ B(t)} - -[4 + B(1)]4 + B(0)]s(0),
and write the direct product
s(z+ )es(t+ 1)
= {4+ B(t)) - [4 + B(1)][4 + B (0)]s(0)}
e {[4+B(t)--[4+B(1)][4+ B(0)]s(0)} (7.9)
={[4+B(t)le[4+B()]}---{[4+B(0)]
® [4 + B(0)]1}{s(0) @ s(0)}.

(7.8)

(7.10)

The correlation matrix
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term I = i(l ""Sj—— Isj+l)[(i + 6)

X855,1) + (3 — e)dls], — 1)] (7.1)
to the Markov chain transition matrix (3.3). If in (2.2) one

replaces  4[1—s;_,(t)s;,1())6,4r) by  i[s5;,.(¢)
—5;_1(¢)]6;(t), then term I in the Markov chain transition
matrix is replaced by

term I =4(1—s5,_,5,,,)[8(s},1) + 85}, — 1)]

445,11 — 5 1)[2€8(s;,1) — 2€8i(s], — 1)].(7.2)
Notice that
term I=term II, for e=0. (7.3)
This justifies replacing (2.2) by
5t + 1) =st),
s+ D) =4[5_1(0) + 5.1 (¢)]
+4[841(8) —5_41(£)]6;(2), (7.4)

syt + 1) =sy_,(t),

where j = 2,3,....N — 1, t =0,1,..., and € = 0. In that sense
the linear stochastic system (7.4) for € = Qis equivalent to the
original nonlinear stochastic system (2.2) for € = 0.

Using vector notation for s(¢ ) and the matrix A4, defined
in the preceding section, enables one to write (7.4) in the form

st + 1) =[4 + B(¢)Js(z), (1.5)

where the N X N matrix A is given by (6.10) and the N XN
random matrix B () is

0
0
, (7.6)
On_1()
0
I(s(t+ Hes(t+1)
=([4 +B(t)le[4+B())-([4+B(0)]
® [4 + B(0)])[s(0) @ 5(0)]. (7.11)
But
(A+Bit)]el4+B))
=A®A+ (B(t)®B(t)), (7.12)

since (B (¢)) = 0,fore = 0.Furthermore, (B(t)® B (t))isin-
dependent of ¢. This follows from the definition in Sec. II of
the independent, identically distributed random variables
6;(¢). Using (6;(2)6;(t)) = 8(i, j) one finds the explicit result
((B(t)@B(t)]ix jm)
= (By(t)Bim(t))
=12z, 8(,k)[ — 66+ 1)+ 68, —1)]
X[ —8(k,m + 1) + 6(k,m — 1)], (7.13)

where
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2 = {0, for i=1or N, (7.14)

1, fori=2,..,N—1,
so one can replace iz,z,8(, k) by 32,8(i, k) in (7.13). With
(7.14) the elements of 4 may be written as

A =47,[8(jm + 1)+ 8(j,m — 1)]
+ 8(/,1)6(m,2) + 8(j,N }5{m,N — 1}.
Introduce the time-independent N > X N > matrix

(7.15)

C=(B(t)eB(t)), (7.16)
with elements given by (7.13). Then from {7.11)

(s(t)es(t))y =[4e4 + C1[s(0)es(0)], {7.17)
or, equivalently,
(st + Neslt+ 1)) =[4ded + Cl{s(t)es(t)), (7.18)
ie.,
(s:(t + Vst + 1))

= Z[(A ® A )it jm + Cit ym 1 {55 5, (2 )

= Z[A,.jAkm + Cia jm 1 €55t )5, (2)), (7.19)
where

(:(t)s:8) =1, for r=0,1,..; i=1,..,N, (7.20)
and

(5,(0)5,,,(0)) = 5,(0)s.,, (0)- (7.21)

From the discussion of the decomposition (Sec. IV} one
sees that spins on different space-time sublattices are mutu-
ally uncorrelated (initially, and therefore for all time). Con-
sequently, for spins s; and s, on different space-time sublat-
tices

(s:(8)sc2)) = (st ) (52 D)
where (s;(¢}) is given by {6.17).

For spins s; and s, on the same space-time sublattice,
one solves the nonhomogeneous, linear system (7.19) subject
to (7.20) and (7.21). The result is

N-—~1

(si{t)sn () =1+ Z ¢, sinfa,((j+ m)/2 —1)]

(7.22)

Xsin[a,(j — m)/2)](cos a, ), (7.23)

where j, m = 1,2,...,N, and j + m is an even integer. The
symbol a, is defined in (6.13) and the coefficient ¢, is found
from (7.23) for ¢t = O by using the initial values (7.21). Notice

that
L 00

limit of {s;(¢)s,,()) =1, (7.24)

consistent with the sublattice limiting behavior found in Sec.
VL
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Vill. REMARKS

For € =0 the above time-dependent model does not
entirely “forget” its ¢ = 0 condition for #—c. Such long-
range correlation in a space-time lattice which is infinite in
only one dimension does not violate the Perron—Frobenius
theorem. One is studying a system which is very similar to
the zero-temperature case of Baxter’s eight-vertex model,*°
where the latter model is taken in the form without four-spin
interactions. The eight-vertex model (toroidal boundary
conditions) then decomposes (see Fig. 10.4 of Baxter’s
book!!) into two independent, square-lattice Ising models.
At zero temperature there is, of course, long-range correla-
tion in even the one-dimensional Ising model.

Clearly the time evolution of one-dimensional Ising
spin systems is linked to the equilibrium behavior of two-
dimensional Ising spin systems and related vertex models.
This was evident, for example, when Felderhof'> diagona-
lized the evolution operator for the Glauber model. His
method is closely connected with the Fermi-operator tech-
nique used to diagonalize the transfer matrix for the two-
dimensional Ising model.'*"*
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Minimization of the energy functional of a one-dimensional fermionic system

in the large-/V limit
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A one-dimensional system of N nonrelativistic fermions in the confining potential is studied in the

large-N limit where a classical limit appears.

I. INTRODUCTION

The analysis of many quantum theories with a large
number of degrees of freedom surprisingly simplifies with
.increasing number of degrees of freedom.! In the limit
N— 0o, where N measures the number of degrees of freedom,
it is possible to obtain a new type of classical limit of the
quantum system. This is mainly due to the fact that quantum
fluctuations of suitably chosen operators vanish in the limit
when the number of degrees of freedom increases. It was
shown? that one can find a classical phase space to define a
consistent Poisson bracket and a classical Hamiltonian. In
this paper we have reduced the problem of finding average
values and the ground-state energy to the problem of mini-
mizing the corresponding classical Hamiltonian.

A particularly efficient method for extracting the large-
N behavior of a quantum theory is a collective-field ap-
proach used by Jevicki and Sakita,” which represents a gen-
eralization of the Bohm-Pines treatment. It was shown* how
to extend this approach to include nonrelativistic fermions
in one dimension. Choosing the density as a collective field,
the theory in the large-N limit, where ¥ is the number of
fermions, results in the Thomas—~Fermi theory plus correc-
tion terms. This is in analogy with the result for the three-
dimensional case, as stated by Lieb.

It is interesting that the same type of functional appears
in the large-N limit of the SU(N ) invariant random matrix
model.® This is a consequence of the fact that the N-particle
Fermi gas can be restated in terms of the matrix problem
mentioned. The same type of functional appears in the large-
N limit of the Calogero-Moser system with specific values of
the coupling constant.’

In this paper we solve the problem of the N fermions in
one dimension. The fermions interact via the confining po-
tential ¥ (x,y) = 2gix — y!, arising in the large-N limit of the
one-dimensional quantum chromodynamics.® This problem
also appears in Witten’s analysis of barions,”'° concerning
symmetric ground states and antisymmetric excited states.
In Witten’s further analysis barions are similar to solitons.
In our one-dimensional analysis we have found that particles
concentrate only on the interval of finite length. If we intro-
duce the density of fermions p(x) as a collective field, then the
resulting energy functional® is

Jig) = ?-:—L¢3dx+gLL!x-y|¢(x)¢(v)dxdy,

where we have taken the mass as m = 1. Solving the minimi-
zation problem should give us the minimal energy and the
distribution of particles in this state.

698 J. Math, Phys. 26 (4), April 1985

0022-2488/85/040698-07$02.50

In Sec. IT we give a mathematical formulation of the
problem and show that this problem is nonconvex. We also
derive the virial theorem. In Sec. III we construct a station-
ary point, and in Sec. IV we show the uniqueness of this point
up to the translation. In Sec. V we prove that the stationary
point constructed is the point of the minimum. In Sec. VI we
briefly compare our results with the three-dimensional case.

Il. FORMULATION OF THE PROBLEM AND SOME
AUXILIARY RESULTS

Let L? = L?(R), 1<p < o0, be a Banach space consist-
ing of real measurable functions on R with the norm

10 = ([ 1o ax)”

For a given N € N, let X be a convex set defined by
K= {z € L 'nL>z30,|jz||, = N, j |x|z dx < oo] (2.1)
R

Assume that g is a given positive number. Let us define the
functional J:K—R as

r91=Z [ 2axrg [ [ 1x—sipms vz ay

2.2)
We consider the following problem:
inf{J(@)deK}. (2.3)

The first term in J is obviously convex. Let us investi-
gate the properties of the second term in J.
Proposition 2.1: Let us define a functional :X—R by

Ii$)= ” Ix — $16 (x4 ) d.

Then I is a concave function on XK. Let ¢ be an even function
from K. Then
x|

N[ g tnatio) =2 [ o [ o0y

(2.4)

<2N L 1|6 (x)dx.

Proof: Let us first prove the second assertion. We use
the equalities

16)=1 f " (=3 + x4 71} x)6 ()dx dy
=2L+°°f2x¢(x>¢mdxdy
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b2 +°°L+°° 206 (x4 () dy
IR IR

Jx}
=2 [ ot [ oomyax

Becauseof||¢ ||, = N,wehavel (¢ )<2N fg |x|¢ (x). Usingthe
inequality |x — y| + |x + y|>2x, we obtain

1(¢)>NL|x|¢(x}dx.

Now let us prove the first assertion. Let u,,u, € K, u(t)
= (1 — t)u, + tu,, and v = 4, — u,. We use the equality
T(u(t)) = (1 — ) (uy) + tl () — (1 — £ )] (v).
We have velL'nL3 fgpuix)dx =0, and [g|x||vix)dx
< + . Let § denote a Fourier transform of v. Then
pel=, beL=, |b||l,<C/H2m, ©0)=0. (2.5)

Now we conclude that

8( p)/p| < C /2. ' (2.6)
Because of |x| = — 20(1/p%), (2.5), and (2.6), for we C,

w = v, we have

Io)= —ZJ;Iw(p)Izdp= ) f p~21o( p)|? dp,

i.e., I (v) <O for u,#u,. We have already proved
T(u(e))>(1 — ¢ ) (uy) + ol (ur);

hence I is a concave function.

Corollary 2.2: Problem (2.3) is a nonconvex minimiza-
tion problem.

Theorem 2.3 (virial theorem): Let ¢, be a solution for
(2.3), C, = (7/6)fp ¢ & and C, = gl (#,). Then 2C, = C,.

Proof: Let us define a function ¢ by

¢(x)= (C2/2C1)]/3¢0(x(C2/2C1)”3).
Then we have

J(@)=3/4C°C3°>J(p) = C, + C,. (2.7)
On the other hand, it is well known that

C, + C,»3/4'3C\*C?7?, for every C,,C,>0, (2.8)
with equality in the case 2C, = C,. The statement of this
Theorem follows from (2.7) and (2.8).

Hl. CONSTRUCTION OF THE STATIONARY POINT

The main aim of this section is to construct a stationary
point for the minimization problem (2.3). In the following
lemma we obtain the necessary conditions for (2.3).

Lemma 3.1: Let ¢, be a solution for (2.3). Then there
exists a positive number A (Lagrange multiplier) such that

§¢é(x)+zg [ b= sigabiay =1

on the set {x € R:idy(x) >0 (a.e)},
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2gfn 1x — pldolldy>A

on the set {x € Rigy(x) =0 (a.e)}. (3.1)

The expression A = 1/N ]J (@) is also valid.

Proof: Let ¢ €K and te(0,1). Then ¢, =(1 —t)d,
+ t¢ € K. We also have ¢ ~![J (¢,) — J (#o)]1 >0. Taking the
limit #—0, from the preceding inequality we obtain

L [—”; 3+ 22 f Ix —y|¢o(y>dy] (# — do)dx>0.

(3.2)

Arguing along the same lines as in Ref. 10, from Eq.
(3.2) we obtain the existence of A such that (3.1) is valid. 4 is
obviously positive. Let us multiply the first equation in (3.1)
by a ¢, and integrate. We obtain

[ 63 +2160=1 [ 4o=n. 33

Because of Theorem 2.3, Eq. (3.3) implies A = (1/N) 1 J (¢).
By using the scaling arguments, we can show that the
solution of (2.3) has a form

¢N,g(x) = N2/3g]/3¢ (x(g/N)llg)’
where ¢ is the solution for the case N =1, g = 1. Then

J(png) =N"7g"T(8).

If A is a Lagrange multiplier in the case N =1, g = 1, then
;LN,g =g2/3N4/3 A

In the following we consider the case N = 1, g = 1. Be-
cause of the scaling arguments, we can easily construct a
solution for the general case if we know the solution for the
case N =1, g = 1. Let us consider the following problem:
Find A € R and a positive function ¢ € L 'nL >, such that

T 8% +2 [ k—slgbldy =1

onaset {x:4(x)>0 a.e. onR},

2L Ix — y16 (dy>A

onaset {x:¢(x)=0 a.e onRj},

[soar=1 34)

Every function ¢ which satisfies problem (3.4) we call a
stationary point for (2.3), and A is a Lagrange multiplier.
Conditions (3.4) are the well-known Kuhn-Tucker condi-
tions for problem (2.3). For convex minimization problems,
the Kuhn-Tucker conditions are necessary and sufficient
conditions for the extremum, but for nonconvex problems
they are only necessary conditions.

Our aim is to obtain a solution for (3.4). Let us look for
an even solution of problem (3.4) such that {x:¢4 (x)> 0}
= ( — a,a), for some a > 0. By differentiating and introduc-
ing a new function ¥ = ¢ %, we obtain the following differen-
tial equation:

—u" =(8/™Wu on(—a,a) (3.5)

Because of the even properties of the solution, we have
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u(—a)=ul@)=0, u'(0)=0, ) Judx=1. (3.6)

By multiplying (3.5) by ' and integrating, it follows
that
u'?(x) = u'(a) — (32/37)> ¥x),
(3.7)

u'x)=u'*—a) — (32/37W*?x), VYxe(—a,a)

Because of the positivity of the solution, from (3.7) we con-
clude that

t'a)= —u'(—a) (3.8)

Integrating Eq. (3.5), we have

—u'la)+u'(—a)=8/7. (3.9)
Equations (3.8) and (3.9) therefore imply

u'la)= — 4/ = —u'(—a) (3.10)

Because of the positivity of 1, we conclude that u satisfies the
following conditions:

u' =4/ (1 — 27%/3)u*’})V?  on(—a,0),
W = —4/m(1 — 272/3w*)'* on (0a),

(3.11)
u(—a)=ula)=0, u(—a)=4/7= —u'la),
u'(0)=0.

From (3.11) it follows that
u(0) = (3/2m)*>. (3.12)

From (3.11) we can also determine the length of the interval

ula} du 4
= - —a. 3.13
J;(o, (1= /31372 2 (3.13)
Let us use the expression
f _ f |_zdz
b (1 —y*2)1/2 b (1 — 2172
3
_ 2B (i)] : (3.14)
73/4 3
(see Ref. 11).
By using (3.14), from (3.13) we conclude that
a=3W3/2m)' (@) (3-15)
Let us mention that Cauchy’s problems
V' = —4/7(1 — 277/ 333V,
vla)=0 on|(0,a), (3.16)
v =4/7(1 — 272/ 33312,
v(—a)=0 on(—a0), 3.17)

have a unique solution, with a given by (3.15). Therefore we
may conclude that the solutions of Egs. (3.16) and (3.17) take
the same value (3/277)?/2 at zero. Hence we have constructed
a C! function v, which satisfies (3.16) and (3.17). Further-
more, we have v € C*( — a,a).

Let us now prove that ¢ = /v is a solution of problem
(3.4).

From (3.16) and (3.17) we have

v2(x) = (16/7%(1 — 272/3* (). (3.18)
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By differentiating, it follows that

2" = —(16/7W'\v  on(— a,a). (3.19)
Zero is the only null point of v’, hence we obtain
T/2(¢%)" + 46 =0 on(— a,a). (3.20)
Integrating (3.20), we have
772 2y 2y "
Z 107 - @i—a) +4 [ soly=0, (.21
— Z {670~ @) — 4 [ sbiy=0. (322
Adding up Egs. (3.21) and (3.22), we obtain
T 26 (x) + 4 f =) sy =o0. (3.23)
2 —alx—y]
Integrating (3.23), we have
To2)+2 [ b=yl
=Zs70+2 [ Dlsvir (324
Let us define the Lagrange multiplier A as
1=Zo10+2 [ Wi 325)
From (3.20) we have
a #2 a ” _ #2 N
f_a e )= — TJ; vV'y=a-— —4—¢ (0. (3.26)
Therefore,
A =2a. (3.27)

Let us now evaluate f* _¢ (y)dy. Calculating as in the
equality (3.26), we obtain

[ svmr= [ Vaay= - Lwa-ui-an=1

(3.28)
Also, let |x| > a. Then

2 [ k—ylswy>2ixl [ poiay

>2|x|>2a = A. (3.29)

Hence the pair {4,v}, where A is given by (3.27) and v by
(3.16) and (3.17), is a solution of problem (3.4). Because of the
virial theorem, we have

Jig)=3 =4a. (3.30)
The numerical value of a number a is
a=} (\/5/27)”3{1"@)]3 = 1.211 8677. (3.31)

From(3.31)we have A = 2.423 9354and J (¢ ) = 1.038 8295.
The value of a solution at zero is

¢ (0) = (3/27%)"/3 = 0.533 659.

Values of the function ¢ = v on the interval (0,a) are deter-
mined by numerical integration of Cauchy’s problem (3.16)
using the Runge—Kutta method with a step # = — a/1000.
The results are plotted in Fig. 1.

(3.32)
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P(X)

05:

-1.2m97 127 X

FIG. 1. Density distribution ¢ (x). Plotted is the rescaled function
¢()E) =N —Z/Sg—113¢ (x)’ % :x(g/N)”:"

IV. UNIQUENESS OF THE SOLUTION

Because of translational invariance, we obviously have
infinitely many solutions for problem (3.4). However, if we
specify a solution such that f;F ¢ = (° _ ¢, weshallbeable
to prove the uniqueness in this case. If we choose the condi-
tion at another point z instead of at zero, the solution will be
fixed in respect to that point. Hence we shall prove the
uniqueness of the solution up to the translation.

In order to show the uniqueness of the solution, we start
with a related simpler problem: Find a positive number 5 and
u € C'(0,b) such that

w'= —4/r*(1 — 27°/3)u**)}"* on(0,b),

4.1)

u(0) = (372773, ulb)=0.

Proposition 4.1: Problem (4.1) has a unique solution
{ap} e RXC'(— a,a), where a is given by (3.15) and vis a
solution of Cauchy’s problem (3.16}.

Proof: The uniqueness of the solution for problem (4.1)
follows from the construction of a and v.

Let us now extend problem (4.1) to the following prob-
lem: Find a positive number b and u € C '( — b,b ) such that

u = —([4/7)1 — 27332 on (0,6),

w = @/m\1 — 27/3)* Y2 on(— b0), (4.2)

w0) = (37272, u{—b)=ulb)=0.

Proposition 4.2: Problem {4.2) has a unique solution
{a,v} e RXC'(— a,a), where a is given by (3.15) and v is a
solution of Cauchy’s problems {3.16) and (3.17).

Now we are able to show the uniqueness of the follow-

ing auxiliary problem: Find positive numbers b and ¢, and a
positive function u € C?{ — b,c) such that

—u" =(8/7Nu on(—b,c),
(4.3)

J:’\/5=1, u(—b)=ulc)=0, -b‘[;= J;\[;

Lemma 4.3: Let {a,v} be as in Proposition 4.2.Then
{a,a,v} is a unique solution for a in (4.3).

Proof: We have already proved that {a,a,v} is a solution
for {4.3). It remains to prove that {a,a,0} is a unique solution
for (4.3). Let {b,c,z} be another solution for (4.3). Then z
satisfies the equation

—z" =8/mJz on( — byc). (4.4)
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Integrating Eq. {4.4), we obtain
—Z)+2Z(—b)=8/7 (4.5)

Multiplying Eq. {4.4) by 22’ and integrating the result-
ing expression, we obtain

—2%x) + 2% — b) = (32/37°)2 *x),
(4.6)
Ux) — z%c) = — (32/377)2%%(x).

Adding these two equations, and because of (4.5), we obtain
Z{—b)= —Z{c)=4/7". 4.7)

From (4.6} and (4.7) we derive a differential equation of
the first order for z:

22(x) = (16/7%)(1 — (27/3)2>/*(x)) on ( — b,c).

Let us define x, as a point from (— b,c) such that
Z'{x,}) = 0. Obviously, thereis a unique x, € { — b,c)such that
Z'(x,) = 0. We also have z{x, ) = (3/27%)*/>. Then we have

2 ={@/7)1 — 272/3) 22, Z(—b)=0,
z(x,) = (3727 on( - b,x,)

and (4.8)
Z'= — (@4/m)1 — 27 /3)2 1) 2 2lx,) = (3/207)P3,

zic) =0 on{x,c).

zZ

Therefore we have the equalities

2x,)
x,+b =T 24
4 Ji—s) (1 = 2a7/3pP2) 12
_T (" dy
4 Juxy (1 — 277/3)° )2
=C—x,. (4.9)
From (4.8) we conclude that x, = { — b + ¢}/2. By perform-

ing a translation for x, in {4.8), we obtain problem (4.2). Be-
cause of Propositions (4.1) and (4.2), it follows from (4.8) that
zZix —x,)=vix), and c—x, =a= —b—x, =(b+c)/2.
Now we have that z is symmetric around x,. Hence from
5°_ oz = S5z, we conclude that b = ¢. Therefore x, =0
and problem (4.3} has a unique solution.

Lemma4.4:Let { 4,4 } beasolutionfor(3.4). Then¢ has
a compact support.

Proof: We have the inequality

A= §¢2(x)+zf It —p6 Wdy> T 6 2x) + 20x]| + ¢
R 2

on the set {x:¢ (x)>0].

The statement of Lemma 4.4 follows directly from this
inequality.

Theorem 4.5: Let g and v be as in Proposition 4.2. Let A
be given by A = 2a and ¢ by ¢ = \/v. Then {4,4 ] is a unique
solution for (3.4) such that ¢ is continuous and (" =¢ {x)dx

= J% .4 (x)dx.

Proof: We have already proved that {2a,\/v} is a solu-
tion for (3.4).

Let {u,1] be another solution for {3.4) such that ¢ is
continuous. Them {1>0] is an open set. Let {b,,b,) be a
subset of {# >0} such that ¥{b,) = ¥{b,) = 0. By differenti-
ating, we obtain
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— (@) =8/m) on(bubi), ¥(b)) = ib) =0,

b,
J ¥=C>0. (4.10)
b,
From (4.10) we conclude in a similar way as in Lemma 4.3
thaty'(b,) = — ¢'(b,) = (4/7°)C. Let us suppose that supp 3

contains more than one part. Let (4,8 ) C {¢ > 0} besuch that
YA )= Y(B)=0and 0<A<B. Then we have

2L |4 — ylg)dy = u, ZL |B — y|$y)dy = p.

(4.11)
We can write (4.11) in the form
[ - | u-pps [ Tp-aw- £,
B (4.12)
B —B _ “+ o« _ _ i
[ @+ | @-sp+ [ Tp-mw- L

From (4.12) we obtain

Al o [T [
T o I

s owa e [T [
2 [ e [
=L f;ydn

2

Substituting (4.13) into (4.14) and using the expression
S8y = (B + 4)/255 ¢, we have

A —A4 + o B
w-a){[ v+ [ Tu— [ Tus 4] -0
—A — A A
. (4.15)
From >0 on (4,B), §;" *¢Y = §° _¢, and (4.15) we
conclude that 4 = B. Now we have 0 € {1 > 0}, and the set
{#> 0} consists only of one interval, i.e., there exist numbers
¢,b>0such that ( — b,c) = {1 >0}. Now from Lemma 4.3 it

follows that b = a and ¢ = \b.

(4.14)

V. SOLUTION OF THE MINIMIZATION PROBLEM

In this section we prove the existence of a solution of the
minimization problem (2.3). The results obtained in the pre-
ceding sections are crucial for finding a solution of this prob-
lem. Obviously, it is enough to treat a case g = 1,N = 1.

For a w:R—[0, ), let u* be a symmetric decreasing
rearrangement defined as in Refs. 12 and 13. For the positive
symmetric decreasing g and non-negative functions fe L?
and 2 € L7, we have

jR Lf(x)g(x — y)h (dx dy< L f F*(xglx — )k *(x)dx dy,
(5.1)

where f* and /# * are symmetric decreasing rearrangements
of f and h, respectively. This is the well-known Riesz
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theorem (see Refs. 12 and 13). We also have (f%)* = (f*)%,
pointwise for every measurable fand positive number a, and

I £1l, = 1| f*|l, for p € [1,0).
Lemma 5.1: Let u € K. Then

JIJR ulx)|x — yluy)dx dy> L_Lu*(xnx — y|ury)dx dy.

(5.2)

Proof: Without loss of generality, we may suppose that
u has a compact support. Then u* also has a compact sup-
port. Hence there exists C' > 0, such that

[|x —y| — Clulx)up)dxdy =0
|x —y|>C
and

Jf [|x —y| — Clu*(x)u*(y)dx dy = 0.

lx—y>C
Let us-define the function g by g(x) = |x| for x<C and
glx) = C elsewhere. Then we have

L[| 1x = pluterutaz ay
_ L L Ix — p|u*(x)u*)dx dy
= = | ] 1o~ gtx —i1utxiuyiax ay

+ J;JR [C —glx — y)Ju*(x)u*(y)dx dy

-C U; u(x)dx]2 +C [L u"(.x)dx]2

+ [ [ (b=l —gtx —uteputiax ay
- LL {|x —y| — glx — y)}u*(x)u*(y\dx dy
- _ f f [C — glx — y)lulx)uly)dx dy

+ L j [C — glx — y)]u*(xju*(p)dx dy>0,

because of (5.1). Thus (5.2) is proved.

In order to prove the existence of a solution of problem
(2.3), we start with a related auxiliary problem. Let m be a
positive real number m>2, and

K, = [ueLl(—m,m)nL3(—m,m)|u>O,

[ etz < + 0 [

—m

ux}ddx=1,u even] .

We are looking for a solution of the following problem: Find
u € K,,, such that

2" was+ | U sluteiuplas ay

< % J‘jm v’(x)dx + me fm |x — ylvixpp)dx dy,
(5.3)
Vvek,,.

|. Andri¢ and A. Mikeli¢ 702



Lemma 5.2: Let ¢ be a solution for (3.4). Then ¢ is a
unique solution for (5.3).

First step: Proof: We first prove that (5.3) has at least one
solution. Let {u, } CK,, be a minimizing sequence for (5.3).
Because of Lemma 5.1, {u*} CK,, is also a minimizing se-
quence. Because of Proposition 2.1, we also have

"u:"Ls(—m,m) <C’ (5.4)
Nl = mm =1, (5.5)
[ 1= plususon &

(5.6)

m |x|
=2 f | x|u(x) f u*(y)dy dx<C.
—-m |x|

Hence there exists a symmetric decreasing u, € L ( — m,m)
nL 3 — m,m) and a subsequence of {u*}, again denoted by
the same symbol {#*}, such that

u*—u, weaklyinL?* —m,m). (5.7)
Let us define a sequence {®, } by
x|
o, = [ utbiy. (58
— x|
Because of (5.4), (5.5), and (5.8), we conclude that
”¢n”H'(—-m,m)<C' (59)

Hence there exists an even @, € H '( — m,m) and a subse-
quence of {®, }, again denoted by the same symbol {®, },

such that
&,—P,, weaklyin H'(—m,m),
(5.10)

&, —P,, strongly in L% — m,m).
It is obvious that

x|
o= [ wipiay

Because of 1 € L ) — m,m), it is easy to prove u, € K,,. We
also have

tim [ (P> [ e

Now let us prove the equality

im | " b= luswuartias ay

(a.e.)on [ — m,m].

(5.11)

= f f |x — yluglx)uoly)dx dy. (5.12)
We have

f jm ffm [x — y| [urx)uk(y) — uolx)uoly) ] dx dy‘

=2

[7 1 ek, o)~ et |

<2

[" ixlusre, — @ecks|

+2

[ belao — utiwi@utniax|

<2” leu:”Lz( — m,m) ”¢n - ¢O”L2( — m,m)

+2 fm || Dolx)(ug — u*)(x)dx . (5.13)
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Because of (5.4), (5.5), and |x|®, € L *( — m,m), (5.13) implies
(5.12). We can therefore conclude that %, is a solution for
(5.3).

Second step: Let us obtain necessary conditions for (5.3).
Let u, be a solution for (5.3). Arguing along the same lines as
in the proof of Lemma 3.1, we obtain that there exists a
positive number A,, (Lagrange multiplier) such that

T +2 [ sl =4,

on the set { — m<x<m:uy(x)>0, (a.e.)},

f Ix — Vugildy>An

on the set { — m<x<m:uy(x) =0, (a.e.)},

ij uy(y)dy = 1.

Let {1,¢ } be a solution for {3.4), defined in Sec. II. Be-
cause of m>2, {4,4 ] is also a solution of (5.14). However,
arguing as in Sec. III, we easily obtain that (5.14) has only
one solution, {A,¢}. We therefore may conclude that
A,, =A and u, = ¢. Hence ¢ is a unique solution for (5.3).

Theorem 5.3: Let {A,4 } beasolution for (3.4), defined in
Sec. II. Then ¢ is a solution for (2.3)and J (¢ ) =3 4.

Proof: Let ue K and J (u) < + . We wish to prove
J(u)>J (¢ ). For u € K, we have u* € K and J (u)>J (u*). Be-
cause of Proposition 2.1, we have uw*eL'nL>® and
Sr |x|u*(x)dx < + . Let us define a Banach space B by

(5.14)

B={zeL'nL® ” 1] |2)|dx < oo }. (5.15)
R
The norm on B is defined by
lzlls = (11 + |x[)zll, + [lz]]5. (5.16)

J is continuous on B.
For Ve > 0O, there is an even «, € B with a compact sup-
port, such that

llue —u*||s<e. (5.17)

Therefore, for every € >0, there are even u, e K and m > 2,
such that supp u, C[ — m,m]

I (ue) = J (1*)|<e. (5.18)

Because of Lemma 5.2, we have J (1.} > J (¢ ); hence, we con-
clude that

Jw)zJ(u*)>J(p) —¢,
for every €> 0. The function ¢ is, therefore, a solution of
(2.3). Lemma 3.1 implies J (¢ ) = 31.

Corollary 5.4: The function ¢ is a unique solution for
(2.3) up to the translation.

VI. CONCLUSION

In this paper we have analyzed a one-dimensional sys-
tem of nonrelativistic fermions interacting via confining po-
tential. In the limit where the number of particles N in-
creases, we can introduce the local density as a collective
variable. In the leading order in N, we obtain the Thomas—
Fermi approximation and the corresponding minimal ener-

gy is
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ETF = 298(\/3‘/77.)1/3[[*(%)] 3N7/3(2g)2/3
= 0.654N 7/}(2g">.

Let us note that this result, obtained in the Thomas-Fermi
approximation, is consistent with the lower bound™ of the
Dyson-Lenard type, which holds for the Schrédinger equa-
tion for fermions

,”.2/335/3

/ /
27/35 (28')2 3N7 3

E min P

=0.531N"3(2g)*%.

We also want to emphasize that the solution of the fer-
mionic problem has a compact support and is unique. Com-
parison shows that our results for the one-dimensional case
have the same qualitative properties as those for the solu-
tions of the three-dimensional Thomas-Fermi theory,>? in
spite of the fact that the one-dimensional problem is noncon-
vex.
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A method to obtain fractional approximations to the Bessel function J,(x) is reported here. This
method improves a recently published one principally in that all the parameters are uniquely

determined by linear equations. Our approximations give fairly good accuracy for all real, positive
values. The maximum absolute error for the first-degree approximation is about 0.0035, and for

the fourth-degree one, about 2.8 X 10~°.

I. INTRODUCTION

Recently, a new method for the approximation of wide-
ly used functions in physics was introduced.! This method is
based on the simultaneous expansion of the function for
large and small values of the independent variable. This
method yields good approximations to the Coulomb func-
tion. However, some difficulties appear, since the approxi-
mations depend on one phase parameter 8, which cannot be
obtained from algebraic equations. This parameter must be
found by trial.

A different method is presented here, keeping the basic
idea of simultaneous use of large and small values of the
independent variable. This latter method gives an excellent,
though simple, approximation to the Bessel function Jj(x)
which can prove useful in most areas of physics (e.g., quan-
tum mechanics, electrodynamics, plasma physics, geophys-
ics, etc.) where Jy(x) appears. The method is reminiscent of
other two-point Padé approximations® such as the phase-
amplitude method (widely used in nuclear physics®).

The method outlined here represents an improvement
over that developed in earlier papers’** in that (a) all the
parameters of the approximation are determined from linear
equations, (b) these equations and the parameters are real, (c)
there is no need for finding by trial and error the phase pa-
rameter on which the old method depends, (d) there is a
substantial improvement in accuracy as we shall show pres-
ently, and (e) fewer parameters are needed.

Il. PROCEDURE

The differential equation for y = Jy(x) is
2,

dy 14y
dx x dx
In this equation it is possible, in principle, to substitute
the function y by a quotient of two polynomials and, after
rationalizing, to equate the lowest powers of the resulting
polynomial. Thus, we could obtain the parameters of the
approximation in a way similar to the Padé method. By do-
ing so, however, the approximation would fail for large val-
ues of x. In order to obtain approximations for large values of
x we could use equations arising from equating coefficients
of the highest powers of the variable x, but then the values of
the parameters so obtained would turn out to be zero, and no
additional information would be obtained. To prevent this,
transformations in the original equation are necessary before

+y=0.
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the polynomial quotient is substituted. The functions exp(ix)
and x~'/2 must be factored out of the dependent variable.
Now, the factor x ~!/2 is singular at x = 0. Since we want a
regular solution at the origin we use the factor (1 + x)~!/2
instead. ' _
The solution y = Jy(x) to our equation becomes, after

the transformations,
Jolx) = (1 4 x)~"/* [wix)explix) + w*(x)exp( — ix)]
= (1 4+ x)~"2[u(x)cos x + v(x)sin x] ,
where w(x)=4[u(x) — iv(x)] and satisfies
x(1 + xPw” + (1 + x)(2ix® + 2ix + 1w’
+ (3 +ix+(—3+)]w=0.

The asymptotic expansion for w(x) can be found and, since
the leading term gives information about the real and imagi-
nary parts of w(x), we can thus determine the asymptotic
expansions for #(x) and v(x). The respective ascending series
for u(x) and v(x) are not known, however, for these functions
do not satisfy separately the differential equation. Neverthe-
less, it is enough to know the ascending series of
u(x)cos x + v(x)sin x, as a whole, in order to obtain the coef-
ficients of the fractional approximation.

In approximating #(x) and v{x) by a polynomial quotient
we require that the equations which yield the coefficients be
real and linear to avoid multivaluation and make the calcula-
tions convenient. The simplest approximation (i.e., first-de-
gree polynomial) would be

Jolx)=(1 + x)-‘“(M cos x + Lot P g x) ,
1+¢,x 1+¢,x
subjected to the conditions

Py + Px cosx + Do +pix
1+¢gx 14+¢x
=u(x)cos x + v(x)sin x

= (14 x)"2(x)

.;::o [:lz-_/-f: 2(2"_(k1)1;2 (n _izk)]x" » x<1,

= [—‘/1? + 0,(%)]cosx + [—\/1—; + 02(%)]*“" ,
x»1,

sin x

where only the first three terms of the ascending series have
been taken. Explicit expressions for O,(1/x) and O,(1/x) for

© 1985 American Institute of Physics 705



0.104
0.08

0.06- Jo(x) — Jo(x)

—=—= &Jotx)

0.04-

0.02+4

%

B8 Jolx), 1048 Jg(x)

o

any order n of the approximation have been obtained from
the differential equation.

However, for the present case n = 1 only the leading
terms 1/,/7 are needed.

The above conditions fix the values of ¢, Py, P,, po, and
D1, 50 that we finally get

(8 —4m)+x
(8 — 4/m) + Vmx
B—Vr)+x
(8 — 4/mr) +mx

This approximation, even if evaluated to only three signifi-
cant figures,

Jobr)=(1 +x)~1/2

COs X

sin x] .

1.00 4 1.10x
1+ 1.95x
1.35+ 1.10x sin x) ,
1+ 1.95x
gives a maximum error

AT (x)=Tx) — Jox),

Tox) = (1 + x)-“z(

TABLE 1. Comparison between the zeros of the exact function Jy(x) and
those of our latest first-order approximation Jy(x).

Relative error

Zeros Jy(x) Zeros .70(x) {percent)
2.4048 2.4020 0.12
5.5201 5.5219 0.033
8.6537 8.6557 0.024

11.7915 11.7933 0.016

14.9309 14.9325 0.011

18.0711 18.0725 0.0076
21.2116 21.2129 0.0061
24.3525 24.3536 0.0045
27.4935 27.4945 0.0037
30.6346 30.6355 0.0031
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FIG. 1. The error of our latest ap-
proximation Jy(x) — Jo{x) (multi-
plied by ten) compared with the error
Jolx) — Jolx) of the approximation
obtained by a method recently pub-
lished (see Ref. 1). The exact function
Jolx) is also plotted for reference.

I--0.50

--0.7S

--1.00

of 3.5 1072 at x = 3.7, which represents a maximum rela-
tive error of 8.8 X 10~ : . The first 10 zeros of the exact func-
tion J,(x) and those of J,(x) are listed in Table I together with
their percent relative error.

Higher-order approximations have also been obtained.
For n = 4 the maximum error occurs at x = 2.4 and is less
than 2.8 X 10~%. Details of higher-order approximations to
Bessel functions of integer order will be given in a subsequent
paper. .

A regular-size plot of Jy(x) together with J(x) shows no
difference between these functions. Hence, we present in Fig.
1 the plot of 10 times the difference AJy(x) together with the
exact function Jy(x) for easy reference. In Fig. 1 we also
show, for comparison purposes, 4J,(x), which is the differ-
ence Jo(x) — Jo(x), where

Jolx) = (1 +x)7"/% exp (ix)

« [ (0.0162 — 0.226i) + (0.282 — 0.282i)x
(0.156 — 0.4041) + x

] + c.c.

is the approximation to Jy(x) obtained by the earlier method
referred to at the beginning of this article [i.e., by that meth-
od (which is being published) applied to the Coulomb func-
tion"]. The figure shows that the maximum error of the
approximation obtained by our new method is about 30
times lower than that of the approximation J 5 (x) obtained
by the other one. Thus, the method we outline here is not
only more accurate, but in addition no phase finding is need-
ed.

Finally, we wish to stress the advantages of using a sim-
ple fractional approximation to Jy(x) like ours. Although it is
true that the convergence radius of Jy(x) is infinite and any
required accuracy may be obtained by use of the potential
series taking a sufficiently large number of terms, this proce-
dure could become fairly cumbersome if good accuracy is
required for large x. Moreover, it is often found in physics
that J,(x) appears under the integral sign frequently com-
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bined with other functions. Use of the potential series in this
case may alter the region of convergence. Our approxima-
tion is an explicit and simple expression easy to handle in a
variety of applications.

'E. Chalbaud and P. Martin, J. Math. Phys. 24, 1268 (1984).
2W. J. Thron, “Two-Point Padé Tables, T-Fractions, and Sequences of
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SThis approximation J,{x) had already been found by us before the method
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poned until now due to the continual improvements of the method which
finally led to Jy(x).
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We investigate the validity of the weak-Painlevé property as an integrability criterion. We present
an example of a time-dependent Hamiltonian system which possesses a weak-Painlevé type

expansion, while presenting a chaotic behavior. However, this system presents also critical fixed
singularities. The importance of the latter, as far as integrability is concerned, is discussed here.

I. INTRODUCTION

The singularity analysis has been resurrected in the past
few years as an integrability criterion. Introduced a century
ago, this method, usually associated to the name of Painle-
vé,! has been initially used in order to investigate integra-
bility of nonlinear first- and second-order ordinary differen-
tial equations (ODE’s). The recent use of this method
concerned the integrability of nonlinear partial differential
equations (PDE’s).? However, as the original formulation of
the Ablowitz-Ramani-Segur (ARS) conjecture dealt with
ODE reductions of the PDE’s, it was most natural to use this
singularity analysis as a tool for the investigation of the inte-
grability of dynamical systems described by ODE’s. In that
context, the most natural extension of the ARS conjecture
would read like this: “A system of coupled nonlinear ODE’s
is integrable whenever it possesses the Painlevé property,
i.e., the only movable singularities of the solutions in the
complex z plane are poles.” Several works have been devoted
to the study of dynamical systems using the Painlevé proper-
ty.>*>%7 New integrable systems have thus been discovered
and confirmed the particular usefuiness of the Painlevé crite-
rion. Whenever a system exhibits the Painlevé property it is
integrable (although the precise meaning of integrability
must be specified).

The reciprocal proposition seems less well-established.
Starting from trivial examples, (e.g., Hamiltonian systems in
one dimension), one can convince oneself that integrability
can sometimes exist independently of a “nice” singularity
structure. During the course of our investigations, we have
discovered that some systems possess a particular intermedi-
ate status.®

They are integrable and, although they do not possess
the full Painlevé praperty, they exhibit a simple singularity
expansion in powers of (¢ — #,)'/”, with r an integer. We have
called this property “weak-Painlevé.” Several integrable sys-
tems have been discovered ranging from the initial 2-D
Hamiltonians to N-dimensional systems® and even PDE’s.*®

However, recent findings, by one of us'! make manda-
tory the examination of the weak-Painlevé property as inte-
grability criterion. Namely the question we address our-
selves to in this paper is whether the weak-Painlevé property
is always sufficient for integrability.
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I. PAINLEVE AND WEAK-PAINLEVE PROPERTIES
ASSOCIATED TO INTEGRABILITY

In our initial work,*!*!* we have concentrated on au-
tonomous systems (in fact, two-dimensional time-indepen-
dent Hamiltonian systems). These systems present only mo-
vable singularities, and no fixed ones. For these systems, we
believe that the weak Painlevé property suffices for integra-
bility (although it is not always necessary).'* When we turn
now to time-dependent systems, two situations can arise:
Either the fixed singularities are “nice,” or they are not. The
latter case is far from being an abstract one.

Consider the very simple case of the Riccati equation

x=x>4+1(t) (1)
The movable singularities of this equation are pure poles.
However, if f (¢ ) has singularities at finite values #; of ¢, x has
Jixed singularities at these values, these singularities depend-
ing on the behavior of f near ¢;. One can easily choose fin
order that these singularities be critical (i.e., not poles). It is

- enough for f to have double poles:

flt)=a/t?

a not of the form n(n — 1) with »n integer.

However, whatever fis, this equation can be reduced to
the second-order linear equation

y=rit)y, (2)
by x = y/y.

This equation is considered integrable because it is lin-
ear, independent of what the singularities of fare. In general,
one cannot express y explicitly {except for very special
choices of f), evenif f has no singularities at finite #, ’s, but still
this is considered as an integrable case.

In fact, linearization can even accommodate critical
singularities which are movable in some sense. Consider a
time-independent system where one integration is explicitly
possible. This reduces the original system to a new one with
one less degree of freedom and a possible explicit time depen-
dence.

In an earlier paper,'> we have presented such a system
starting from

x= —x*+axy+ax+By+4, 3)
y=—y+bxy+yx+dy+p.
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We are interested ing =0, 8 =0.
In this case the first equation for x separates:

x=—-x*+ax+A. (4)

It is of Riccati type and, of course, it has the full Painlevé
property.!
Integrating it, we obtain

x(t) = (r; + cre” =) /(1 4 cel> =),

with r,, 7, solutions of # —ar — 4 =0.

Choosing a solution for x, we can write the second equa-
tion as

y= —y + (bx(t) + 8y + (yx(t) + ). ()
This equation is again a Riccati for y and its movable singu-
larities at given x are poles. However, the Riccati for y could
a priori have a “fixed” singularity which is worse than a pole.
But this “fixed” singularity is really a movable singularity of
the original system (3) because the pole of x is movable.

In Ref. 15, we have presented a detailed analysis of the
conditions for the system (3) to possess the Painlevé proper-
ty. However, what is clear from what we said above is that
this is by no means essential for integrability: the two Riccati
equations can be integrated in cascade, through the usual
local linearization procedure one applies to the Riccati equa-
tions. So here we see a case where critical singularities that
are fixed or even movable in the original system (although
fixed in the reduced one) do not hinder integrability.

As a matter of fact, we do not know of any case of sys-
tems of nonlinear ODE’s which possesses fixed critical sin-
gularities and is integrable otherwise than through a lineari-
zation.

Again let us recall that, according to the currently ac-
cepted definition of integrability, a linear ODE with variable
coefficients is considered as integrable even if it presents
critical fixed singularities. However, this does not necessar-
ily mean that fixed critical singularities are not revelant for
integrability. They may well be acceptable only whenever
the system is linearizable.

In a recent work,'" one of us has investigated the singu-

larity structure of one-degree-of-freedom nonautonomous .

systems. One-degree-of-freedom, Hamiltonian, time-depen-
dent systems fall in the class examined in detail by Painlevé
and Gambier. There, the full-Painlevé property leads to inte-
grability (although, sometimes at the expense of introducing
new transcendents).

How about the weak Painlevé? The study of a system
due to Sitnikov'® has revealed that the weak-Painlevé prop-
erty does not preclude chaotic behavior of the system. The
equations of motion of the Sitnikov case are

3= —z/[2 + }(1 —€ecos 2t)]P2 (6)

The singularity expansion of z can be written as (7 = ¢ — #,)

z=2zy+ iakfk’s, (7)
k=4

withz, = + (i/2)(1 — € cos 2¢,), £, free, and g free (associat-
ed to the two resonances — 1 and 6). A calculation of the first
terms of the series yields

a, = (625/128 z,)'/%, as= +iesin2t, a,=0.
The above analysis concerns the movable singularities of (6).
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We turn now to the fixed singularities.
It is clear that z in (6) can have a singular behavior
whenever

€cos 2, = 1. (8)
Expanding 1 — € cos 2t, around £, we obtain
(1—€ecos2tP=4B7>+ ...,
with B=¢*— 1.
The leading behavior is, in this case,
z=pr*3,
with 8% =3.
Looking for the resonances we find them at — 2 and 3.
The compatibility condition at § is not satisfied. Thus, a loga-

rithmic term enters the expansion at n = §. However, this
critical singularity is fixed since 7, is not free but given by (8).

IIl. CONCLUSION

So we are in the presence of an equation of motion (one
dimensional, Hamiltonian, nonautonomous) which has a
weak-Painlevé expansion around a movable singularity and
which possesses a fixed critical singularity. Moreover, the
solutions of this equation are known to exhibit chaotic be-
havior which makes them incompatible with integrability.

This could mean one of the two following things: Either
allowing fractional powers is too weak a criterion in order to
ensure integrability, or fixed singularities must also be taken
into account. Our findings do not allow us to draw a clear
conclusion at this stage. We can remark however that the
predictive power of the weak-Painlevé property for time-
independent systems (where fixed singularities do not arise)
has been well established to date. On the other hand, up to
second order, the full Painlevé property, i.e., movable poles
only, does ensure integrability even in the presence of fixed
critical singularities (e.g., Riccati), but then integrability is
obtained through linearization. For higher order, however,
it has not been proved yet that movable poles lead to integra-
bility in the presence of fixed critical singularities.

It might turn out that even fixed critical singularities
are not compatible with integrability for higher-order equa-
tions. One must acknowledge, at this point, Painlevé’s pow-
erful intuition. In his initial project'’ (always motivated by
integrability), he was interested in equations with no critical
singularities at all, although he devoted the major part of his
work to equations with just no movable critical singularities.
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Geometrical methods for the elasticity theory of membranes
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The elasticity theory of curved membranes is developed using geometrical methods. The strain
tensor is shown to be the Lie derivative of the metric tensor with respect to a flow. This
formulation is coordinate-free, and can be expressed in any convenient coordinate system. A
useful fixed coordinate system for the neighborhood of any given membrane surface is
constructed. The formalism is used to expand the curvature free energy of a membrane about its
minimum and to find the induced flow which minimizes shear dissipation in a curved membrane
when the membrane is deformed at constant density. The shear free energy is expanded about its
minimum for deformations of the shape at constant density. The curvature free energy is
explicitly expanded about its mlnlmum for shape changes of a closed membrane which conserve

area and interior volume.

I. INTRODUCTION

The use of geometrical methods in theoretical contin-
uum mechanics is now well established. > The utility